Copiapite

From Wikipedia, the free encyclopedia
Copiapite

Copiapite from the Bolesław Mine, Kłodzko District, Lower Silesia, Poland
General
Category Sulfate minerals
Formula
(repeating unit)
Fe2+Fe3+4(SO4)6(OH)2·20(H2O)
Strunz classification 07.DB.35
Crystal symmetry Triclinic 1
Unit cell a = 7.337 Å, b = 18.76 Å, c = 7.379 Å; α = 91.47°, β = 102.18°, γ = 98.95°; Z = 4
Identification
Color Sulfur-yellow to orange when crystalline, greenish-yellow to olive-green when massive
Crystal habit Tabular pseudo-orthorhombic platy crystals, typically in scaly incrustations or granular pulverulent aggregates
Crystal system Triclinic Pinacoidal
Twinning Contact twins
Cleavage Perfect on {010}, imperfect on {101}
Fracture Irregular/uneven, micaceous
Tenacity Fragile
Mohs scale hardness 2.5 - 3
Luster Pearly on {010}
Diaphaneity Transparent to translucent
Specific gravity 2.04–2.17
Optical properties Biaxial (+)
Refractive index nα = 1.506 - 1.540 nβ = 1.528 - 1.549 nγ = 1.575 - 1.600
Birefringence δ = 0.069
Pleochroism X = Y = pale yellow to colorless; Z = sulfur-yellow
2V angle Measured: 45° to 74°, Calculated: 48° to 72°
Solubility Soluble in water
References [1][2][3]

Copiapite is a hydrated iron sulfate mineral with formula: Fe2+Fe3+4(SO4)6(OH)2·20(H2O).[1] Copiapite can also refer to a mineral group, the copiapite group.

Copiapite is strictly a secondary mineral forming from the weathering or oxidation of iron sulfide minerals or sulfide-rich coal. Its most common occurrence is as the end member mineral from the rapid oxidation of pyrite. It also occurs rarely with fumaroles. It occurs with melanterite, alunogen, fibroferrite, halotrichite, botryogen, butlerite and amarantite.[1] It is by far the most common mineral in the copiapite group.

Lustrous, micaceous crystals of copiapite to 8 mm on matrix from the Alcaparrosa Mine, El Loa Province, Antofagasta Region, Chile (sample size: 11.9 x 7.4 x 4.0 cm)

It rarely occurs as single crystals, is in the triclinic crystal system, and is pale to bright yellow. It is soluble in water, changing the water color to deep orange or orangish-red. In solution copiapite is very acidic. In high concentrations a negative pH can occur, as reported in waters draining from Richmond Mine at Iron Mountain, California.[2] Copiapite can easily be distinguished from native sulfur because it does not give off an odor when dissolved in water. It can be distinguished from similar appearing uranium minerals, such as carnotite, by its lack of radioactivity. The only way to differentiate between the minerals in the copiapite group is by X-ray diffraction.

Copiapite was first described in 1833 for an occurrence near Copiapó, Atacama, Chile.[3] It is sometimes known as yellow copperas. Other occurrences are in California, Nevada, and in the filled paleo sinkholes and caves of Missouri.

See also

References

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.