Converse theorem
In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well behaved.
Weil's converse theorem
The first converse theorems were proved by Hamburger (1921) who characterized the Riemann zeta function by its functional equation, and by Hecke (1936) who showed that if a Dirichlet series satisfied a certain functional equation and some growth conditions then it was the Mellin transform of a modular form of level 1. Weil (1967) found an extension to modular forms of higher level, which was described by Ogg (1969, chapter V). Weil's extension states that if not only the Dirichlet series
but also its twists
by some Dirichlet characters χ, satisfy suitable functional equations relating values at s and 1−s, then the Dirichlet series is essentially the Mellin transform of a modular form of some level.
Higher dimensions
J. W. Cogdell, H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika have extended the converse theorem to automorphic forms on some higher dimensional groups, in particular GLn and GLm×GLn, in a long series of papers.
References
- Cogdell, James W.; Piatetski-Shapiro, I. I. (1994), "Converse theorems for GLn", Publications Mathématiques de l'IHÉS (79): 157–214, ISSN 1618-1913, MR 1307299
- Cogdell, James W.; Piatetski-Shapiro, I. I. (1999), "Converse theorems for GLn. II", Journal für die reine und angewandte Mathematik 507: 165–188, doi:10.1515/crll.1999.507.165, ISSN 0075-4102, MR 1670207
- Cogdell, James W.; Piatetski-Shapiro, I. I. (1967), "Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)", in Li, Tatsien, Mathematische Annalen (Beijing: Higher Ed. Press) 168: 149–156, doi:10.1007/BF01361551, ISSN 0025-5831, MR 0207658