Convergent matrix

From Wikipedia, the free encyclopedia

In the mathematical discipline of numerical linear algebra, when successive powers of a matrix T become small (that is, when all of the entries of T approach zero, upon raising T to successive powers), the matrix T is called a convergent matrix. A regular splitting of a non-singular matrix A results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T. A general iterative method converges for every initial vector if T is convergent, and under certain conditions if T is semi-convergent.

Definition

We call an n × n matrix T a convergent matrix if

\lim _{{k\to \infty }}({\mathbf  T}^{k})_{{ij}}={\mathbf  0},\quad (1)

for each i = 1, 2, ..., n and j = 1, 2, ..., n.[1][2][3]

Example

Let

{\begin{aligned}&{\mathbf  {T}}={\begin{pmatrix}{\frac  {1}{4}}&{\frac  {1}{2}}\\[4pt]0&{\frac  {1}{4}}\end{pmatrix}}.\end{aligned}}

Computing successive powers of T, we obtain

{\begin{aligned}&{\mathbf  {T}}^{2}={\begin{pmatrix}{\frac  {1}{16}}&{\frac  {1}{4}}\\[4pt]0&{\frac  {1}{16}}\end{pmatrix}},\quad {\mathbf  {T}}^{3}={\begin{pmatrix}{\frac  {1}{64}}&{\frac  {3}{32}}\\[4pt]0&{\frac  {1}{64}}\end{pmatrix}},\quad {\mathbf  {T}}^{4}={\begin{pmatrix}{\frac  {1}{256}}&{\frac  {1}{32}}\\[4pt]0&{\frac  {1}{256}}\end{pmatrix}},\quad {\mathbf  {T}}^{5}={\begin{pmatrix}{\frac  {1}{1024}}&{\frac  {5}{512}}\\[4pt]0&{\frac  {1}{1024}}\end{pmatrix}},\end{aligned}}
{\begin{aligned}{\mathbf  {T}}^{6}={\begin{pmatrix}{\frac  {1}{4096}}&{\frac  {3}{1024}}\\[4pt]0&{\frac  {1}{4096}}\end{pmatrix}},\end{aligned}}

and, in general,

{\begin{aligned}{\mathbf  {T}}^{k}={\begin{pmatrix}({\frac  {1}{4}})^{k}&{\frac  {k}{2^{{2k-1}}}}\\[4pt]0&({\frac  {1}{4}})^{k}\end{pmatrix}}.\end{aligned}}

Since

\lim _{{k\to \infty }}\left({\frac  {1}{4}}\right)^{k}=0

and

\lim _{{k\to \infty }}{\frac  {k}{2^{{2k-1}}}}=0,

T is a convergent matrix. Note that ρ(T) = 1/4, where ρ(T) represents the spectral radius of T, since 1/4 is the only eigenvalue of T.

Characterizations

Let T be an n × n matrix. The following properties are equivalent to T being a convergent matrix:

  1. \lim _{{k\to \infty }}\|{\mathbf  T}^{k}\|=0, for some natural norm;
  2. \lim _{{k\to \infty }}\|{\mathbf  T}^{k}\|=0, for all natural norms;
  3. \rho ({\mathbf  T})<1;
  4. \lim _{{k\to \infty }}{\mathbf  T}^{k}{\mathbf  x}={\mathbf  0}, for every x.[4][5][6][7]

Iterative methods

A general iterative method involves a process that converts the system of linear equations

{\mathbf  {Ax}}={\mathbf  {b}}\quad (2)

into an equivalent system of the form

{\mathbf  {x}}={\mathbf  {Tx}}+{\mathbf  {c}}\quad (3)

for some matrix T and vector c. After the initial vector x(0) is selected, the sequence of approximate solution vectors is generated by computing

{\mathbf  {x}}^{{(k+1)}}={\mathbf  {Tx}}^{{(k)}}+{\mathbf  {c}}\quad (4)

for each k 0.[8][9] For any initial vector x(0) {\mathbb  {R}}^{n}, the sequence \lbrace {\mathbf  {x}}^{{\left(k\right)}}\rbrace _{{k=0}}^{{\infty }} defined by (4), for each k 0 and c 0, converges to the unique solution of (3) if and only if ρ(T) < 1, i.e., T is a convergent matrix.[10][11]

Regular splitting

A matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. In the system of linear equations (2) above, with A non-singular, the matrix A can be split, i.e., written as a difference

{\mathbf  {A}}={\mathbf  {B}}-{\mathbf  {C}}\quad (5)

so that (2) can be re-written as (4) above. The expression (5) is a regular splitting of A if and only if B1 0 and C 0, i.e., B1 and C have only nonnegative entries. If the splitting (5) is a regular splitting of the matrix A and A1 0, then ρ(T) < 1 and T is a convergent matrix. Hence the method (4) converges.[12][13]

Semi-convergent matrix

We call an n × n matrix T a semi-convergent matrix if the limit

\lim _{{k\to \infty }}{\mathbf  T}^{k}\quad (6)

exists.[14] If A is possibly singular but (2) is consistent, i.e., b is in the range of A, then the sequence defined by (4) converges to a solution to (2) for every x(0) {\mathbb  {R}}^{n} if and only if T is semi-convergent. In this case, the splitting (5) is called a semi-convergent splitting of A.[15]

See also

Notes

  1. Burden & Faires (1993, p. 404)
  2. Isaacson & Keller (1994, p. 14)
  3. Varga (1962, p. 13)
  4. Burden & Faires (1993, p. 404)
  5. Isaacson & Keller (1994, pp. 14,63)
  6. Varga (1960, p. 122)
  7. Varga (1962, p. 13)
  8. Burden & Faires (1993, p. 406)
  9. Varga (1962, p. 61)
  10. Burden & Faires (1993, p. 412)
  11. Isaacson & Keller (1994, pp. 62–63)
  12. Varga (1960, pp. 122–123)
  13. Varga (1962, p. 89)
  14. Meyer & Plemmons (1977, p. 699)
  15. Meyer & Plemmons (1977, p. 700)

References

  • Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3 .
  • Isaacson, Eugene; Keller, Herbert Bishop (1994), Analysis of Numerical Methods, New York: Dover, ISBN 0-486-68029-0 .
  • Carl D. Meyer, Jr.; R. J. Plemmons (Sep 1977). "Convergent Powers of a Matrix with Applications to Iterative Methods for Singular Linear Systems". SIAM Journal on Numerical Analysis 14 (4): 699–705. 
  • Varga, Richard S. (1960). "Factorization and Normalized Iterative Methods". In Langer, Rudolph E. Boundary Problems in Differential Equations. Madison: University of Wisconsin Press. pp. 121142. LCCN 60-60003. 
  • Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277 .
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.