Continuum structure function
From Wikipedia, the free encyclopedia
In mathematics, a continuum structure function (CSF) is defined by Laurence Baxter as a nondecreasing mapping from the unit hypercube to the unit interval. It is used by Baxter to help in the Mathematical modelling of the level of performance of a system in terms of the performance levels of its components.[1][2][3]
References
- ↑ Baxter, L A (1984) Continuum structures I., Journal of Applied Probability, 21 (4), pp. 802–815 JSTOR 3213697
- ↑ Baxter, L A, (1986), Continuum structures. II, Math. Proc. Camb. Phil. Soc.99, 331 331
- ↑ Kim, Chul; Baxter, Laurence A.(1987) Reliability importance for continuum structure functions. Journal of Applied Probability, 24, 779–785 JSTOR 10.2307/3214108
- Kim, C., Baxter. L. A. (1987) "Axiomatic characterizations of continuum structure functions", Operations Research Letters, 6 (6), 297–300, doi: 10.1016/0167-6377(87)90047-2.
- Baxter, L. A.; Lee, S. M. (2009). "Further Properties of Reliability Importance for Continuum Structure Functions". Probability in the Engineering and Informational Sciences 3 (2): 237. doi:10.1017/S026996480000111X.
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.