Compound matrix

From Wikipedia, the free encyclopedia

In mathematics, the kth compound matrix C_{k}(A),[1] of an m\times n matrix A is the {\binom  mk}\times {\binom  nk} matrix formed from the determinants of all k\times k submatrices of A, i.e., all k\times k minors, arranged with the submatrix index sets in lexicographic order.

{\begin{aligned}C_{1}(A)&=A\\[6pt]C_{n}(A)&=\det(A){\text{ if }}A{\text{ is }}n\times n\\[6pt]C_{k}(AB)&=C_{k}(A)C_{k}(B)\\[6pt]C_{k}(aX)&=a^{k}C_{k}(X)\\[6pt]{\text{For }}n\times n{\text{ identity }}I,C_{k}(I)&=I\,,{\text{ the }}\textstyle {{\binom  nk}\times {\binom  nk}}{\text{ identity }}\\[6pt]C_{k}(A^{T})&=C_{k}(A)^{T}\,,{\text{ over any field}}\\[6pt]C_{k}(A^{*})&=C_{k}(A)^{*}\,,{\text{ over }}{\mathbb  {C}}\\[6pt]C_{k}(A^{{-1}})&=C_{k}(A)^{{-1}}\,,{\text{ for }}n\times n,{\text{ invertible }}A\end{aligned}}

References

  1. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990, pp. 19–20

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.