Colin Maclaurin

From Wikipedia, the free encyclopedia
Colin Maclaurin

Colin Maclaurin (1698–1746)
Born February, 1698 (1698-02-10)
Kilmodan, Cowal, Argyll, Scotland
Died 14 June 1746 (1746-06-15)
Edinburgh, Scotland
Residence Scotland
Citizenship United Kingdom
Nationality Scottish
Fields Mathematician
Institutions University of Aberdeen
University of Edinburgh
Alma mater University of Glasgow
Academic advisors Robert Simson
Notable students Robert Adam
Known for Euler–Maclaurin formula
Maclaurin's inequality
Maclaurin series
Integral test for convergence
Notable awards Académie des Sciences, Grand Prize

Colin Maclaurin (February 1698 – 14 June 1746) was a Scottish mathematician who made important contributions to geometry and algebra.[1] The Maclaurin series, a special case of the Taylor series, is named after him.

Owing to changes in orthography since that time (his name was originally rendered as e.g. "M'Laurine"[2]), his surname is alternatively written MacLaurin.[3] In Gaelic the name is "Cailean MacLabhruinn", which is literally 'Colin, the son of Laurence.'[4]

Early life

Maclaurin was born in Kilmodan, Argyll. His father, Reverend and Minister of Glendaruel John Maclaurin, died when Maclaurin was in infancy, and his mother died before he reached nine years of age. He was then educated under the care of his uncle, the Reverend Daniel Maclaurin, minister of Kilfinan.

Academic career

At eleven, Maclaurin entered the University of Glasgow. He graduated MA three years later by defending a thesis on the Power of Gravity, and remained at Glasgow to study divinity until he was 19, when he was elected professor of mathematics in a ten-day competition at the Marischal College in the University of Aberdeen. He would hold the record as the world's youngest professor until March 2008, when the record was officially given to Alia Sabur.[5]

In the vacations of 1719 and 1721, Maclaurin went to London, where he became acquainted with Sir Isaac Newton, Dr. Hoadley, Dr. Samuel Clarke, Martin Folkes, and other eminent philosophers. He was admitted a member of the Royal Society.

In 1722, having provided a substitute for his class at Aberdeen, he traveled on the Continent as tutor to George Hume, the son of Alexander Hume, 2nd Earl of Marchmont. During their time in Lorraine, he wrote his essay on the Percussion of Bodies, which would gain the prize of the Royal Academy of Sciences in 1724. Upon the death of his pupil at Montpellier, Maclaurin returned to Aberdeen.

In 1725 Maclaurin was appointed deputy to the mathematical professor at Edinburgh, James Gregory (brother of David Gregory and nephew of the esteemed James Gregory), upon the recommendation of Isaac Newton. On 3 November of that year Maclaurin would succeed Gregory, and be credited with raising the character of that university as a school of science. Newton was so impressed with Maclaurin that he had offered to pay his salary himself.

Contributions to mathematics

Maclaurin used Taylor series to characterize maxima, minima, and points of inflection for infinitely differentiable functions in his Treatise of Fluxions. Maclaurin attributed the series to Taylor, though the series was known before to Newton and Gregory, and in special cases to Madhava of Sangamagrama in fourteenth century India.[6] Nevertheless, Maclaurin received credit for his use of the series, and the Taylor series expanded around 0 is sometimes known as the Maclaurin series (Grabiner 1997).

Maclaurin also made significant contributions to the gravitation attraction of ellipsoids, a subject that furthermore attracted the attention of d'Alembert, A.-C. Clairaut, Euler, Laplace, Legendre, Poisson and Gauss. Maclaurin showed that an oblate spheroid was a possible equilibrium in Newton's theory of gravity. The subject continues to be of scientific interest, and Nobel Laureate Subramanyan Chandrasekhar dedicated a chapter of his book Ellipsoidal Figures of Equilibrium to Maclaurin spheroids. (Grabiner 1997)

Independently from Euler and using the same methods, Maclaurin discovered the Euler–Maclaurin formula. He used it to sum powers of arithmetic progressions, derive Stirling's formula, and to derive the Newton-Cotes numerical integration formulas which includes Simpson's rule as a special case. (Grabiner 1997)

Maclaurin contributed to the study of elliptic integrals, reducing many intractable integrals to problems of finding arcs for hyperbolas. His work was continued by d'Alembert and Euler, who gave a more concise approach.(Grabiner 1997)

In his Treatise of Algebra (Ch. XII, Sect 86), published in 1748, two years after his death, Maclaurin proved a rule for solving square linear systems in the cases of 2 and 3 unknowns, and discussed the case of 4 unknowns.[7] This publication preceded by two years Cramer's publication of a generalization of the rule to n unknowns, now commonly known as Cramer's rule.

Personal life

In 1733, Maclaurin married Anne Stewart, the daughter of Walter Stewart, the Solicitor General for Scotland, by whom he had seven children.

Maclaurin actively opposed the Jacobite Rebellion of 1745 and superintended the operations necessary for the defence of Edinburgh against the Highland army. Upon entry into the city, however, he fled to York, where he was invited to stay by the Archbishop of York.

Memorial, Greyfriars Kirkyard, Edinburgh

On his journey south, Maclaurin fell from his horse, and the fatigue, anxiety, and cold to which he was exposed on that occasion laid the foundations of dropsy. He returned to Edinburgh after the Jacobite army marched south, but died soon after his return.

He is buried at Greyfriars Kirkyard, Edinburgh.

Mathematician and former MIT President Richard Cockburn Maclaurin was from the same family.

Notable works

Some of his important works are:

  • Geometria Organica - 1720
  • De Linearum Geometricarum Proprietatibus - 1720
  • Treatise on Fluxions - 1742 (763 pages in two volumes. The first systematic exposition of Newton's methods.)
  • Treatise on Algebra - 1748 (two years after his death.)
  • Account of Newton's Discoveries - Incomplete upon his death and published in 1750 or 1748 (sources disagree)

Colin Maclaurin was the name used for the new Mathematics and Actuarial Mathematics and Statistics Building at Heriot-Watt University, Edinburgh.

See also

References

  1.  Chisholm, Hugh, ed. (1911). "Maclaurin, Colin". Encyclopædia Britannica (11th ed.). Cambridge University Press 
  2. "Colin Maclaurin: A Biographical Note" by Robin Schlapp (6 December 1946). (Note that the quotation in has been altered.)
  3. http://www.m-a.org.uk/docs/library/2064.pdf[]
  4. http://www-groups.dcs.st-and.ac.uk/~history/Extras/Turnbull_Maclaurin_1.html Turnbull lectures on Colin Maclaurin (4 February 1947), Part I
  5. David McNeill (1 May 2008). "University appoints world's youngest professor". The Independent. 
  6. "Neither Newton nor Leibniz – The Pre-History of Calculus and Celestial Mechanics in Medieval Kerala". MAT 314. Canisius College. Retrieved 2006-07-09. 
  7. MacLaurin, Colin (1748). A Treatise of Algebra, in Three Parts.. 

Sources

Further reading

  • Bruce A. Hedman, "Colin Maclaurin's quaint word problems," College Mathematics Journal 31 (2000), 286-288.
  • Bruneau, Olivier (2011). Colin Maclaurin, l'obstination mathématicienne d'un newtonien. Presses Universitaires de Nancy. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.