Choquet integral
Using the Choquet integral to denote the expected utility of belief functions measured with capacities is a way to reconcile the Ellsberg paradox and the Allais paradox.[1]
Definition
More specifically, let be a set, and let be any collection of subsets of . Consider a function and a monotone set function .
Assume that is measurable with respect to , that is
Then the Choquet integral of with respect to is defined by:
where the integrals on the right-hand side are the usual Riemann integral (the integrands are integrable because they are monotone in ).
Properties
In general the Choquet integral does not satisfy additivity. More specifically, if is not a probability measure, it may hold that
for some functions and .
The Choquet integral does satisfy the following properties.
Monotonicity
If then
Positive homogeneity
For all it holds that
Comonotone additivity
If are comonotone functions, that is, if for all it holds that
- .
then
Subadditivity
If is 2-alternating, then
Superadditivity
If is 2-monotone, then
Alternative Representation
Let denote a cumulative distribution function such that is integrable. Then this following formula is often referred to as Choquet Integral:
where .
- choose to get ,
- choose to get
See also
Notes
- ↑ Chateauneuf A., Cohen M. D., "Cardinal extensions of EU model based on the Choquet integral", Document de Travail du Centre d’Economie de la Sorbonne n° 2008.87
External links
- Gilboa I., Schmeidler D. (1992), Additive Representations of Non-Additive Measures and the Choquet Integral, Discussion Paper n° 985...