Cardinality (data modeling)
In database design, the cardinality or fundamental principle of one data table with respect to another is a critical aspect. The relationship of one to the other must be precise and exact between each other in order to explain how each table links together.
In the relational model, tables can be related as any of "one to many" or "many-to-many." This is said to be the cardinality of a given table in relation to another.
For example, consider a database designed to keep track of hospital records. Such a database could have many tables like:
- a doctor table with information about physicians;
- a patient table for medical subjects undergoing treatment;
- and a department table with an entry for each division of a hospital.
In that model:
- There is a many-to-many relationship between the records in the doctor table and records in the patient table because doctors have many patients, and a patient could have several doctors;
- A one-to-many relation between the department table and the doctor table because each doctor may work for only one department, but one department could have many doctors.
A "one-to-one" relationship is mostly used to split a table in two in order to provide information concisely and make it more understandable. In the hospital example, such a relationship could be used to keep apart doctors' own unique professional information from administrative details.
In data modeling, collections of data elements are grouped into "data tables" which contain groups of data field names called "database attributes". Tables are linked by "key fields". A "primary key" assigns a field to its "special order table". For example, the "Doctor Last Name" field might be assigned as a primary key of the Doctor table with all people having same last name organized alphabetically according to the first three letters of their first name. A table can also have a foreign key which indicates that field is linked to the primary key of another table.
A complex data model can involve hundreds of related tables. A renowned computer scientist, C.J. Date, created a systematic method to organize database models. Date's steps for organizing database tables and their keys is called Database Normalization. Database normalization avoids certain hidden database design errors (delete anomalies or update anomalies). In real life the process of database normalization ends up breaking tables into a larger number of smaller tables, so there are common sense data modeling tactics called de-normalization which combine tables in practical ways.
In real world data models careful design is critical because as the data grows voluminous, tables linked by keys must be used to speed up programmed retrieval of data. If data modeling is poor, even a computer applications system with just a million records will give the end-users unacceptable response time delays. For this reason data modeling is a keystone in the skills needed by a modern software developer.
Formal Database Modeling Technologies
UML class diagram may be used for data modeling. In that case, relationship are modeled using UML associations, and multiplicity is used on those associations to denote cardinality. Here are some examples:
left | right | example | |
1 | 1 | one-to-one | person <-> weight |
0..1 | 1 | optional on one side one-to-one | date of death <-> person |
0..* or * | 0..* or * | optional on both sides many-to-many | person <-> book |
1 | 1..* | one-to-many | person <-> language |
As an alternative to UML, Entity Relationship Diagrams (ERDs) can be used to capture information about data model cardinality. A crow's foot shows a one-to-many relationship. Alternatively a single line represents a one-to-one relationship.
External links
|