Carbon–carbon bond

From Wikipedia, the free encyclopedia

A carboncarbon bond is a covalent bond between two carbon atoms.[1] The most common form is the single bond: a bond composed of two electrons, one from each of the two atoms. The carboncarbon single bond is a sigma bond and is said to be formed between one hybridized orbital from each of the carbon atoms. In ethane, the orbitals are sp3 hybridized orbitals, but single bonds formed between carbon atoms with other hybridisations do occur (e.g. sp2 to sp2). In fact, the carbon atoms in the single bond need not be of the same hybridisation. Carbon atoms can also form double bonds in compounds called alkenes or triple bonds in compounds called alkynes. A double bond is formed with an sp2 hybridized orbital and a p-orbital that isn't involved in the hybridization. A triple bond is formed with an sp hybridized orbital and two p-orbitals from each atom. The use of the p-orbitals forms a pi bond.

Carbon is one of the few elements that can form long chains of its own atoms, a property that's called catenation. This coupled with the strength of the carbon–carbon bond gives rise to an enormous number of molecular forms, many of which are important structural elements of life, so carbon compounds have their own field of study: organic chemistry.

Branching is also common in CC skeletons. Different carbon atoms can be identified with respect to the number of carbon neighbors:

  • primary carbon atom: one carbon neighbor
  • secondary carbon atom: two carbon neighbors
  • tertiary carbon atom: three carbon neighbors
  • quaternary carbon atom: four carbon neighbors

2,2,3-trimethylpentane

Synthesis

Carbon–carbon bond-forming reactions are organic reactions in which a new carbon–carbon bond is formed. They are important in the production of many man-made chemicals such as pharmaceuticals and plastics.

Some examples of reactions which form carbon–carbon bonds are Aldol reactions, Diels–Alder reaction, the addition of a Grignard reagent to a carbonyl group, a Heck reaction, a Michael reaction and a Wittig reaction.

See also

  • An extensive list is presented here: list of carbon–carbon bond-forming reactions
  • The chemistry of carbon bonded to other elements in the periodic table:
CH He
CLi CBe CB CC CN CO CF Ne
CNa CMg CAl CSi CP CS CCl CAr
CK CCa CSc CTi CV CCr CMn CFe CCo CNi CCu CZn CGa CGe CAs CSe CBr CKr
CRb CSr CY CZr CNb CMo CTc CRu CRh CPd CAg CCd CIn CSn CSb CTe CI CXe
CCs CBa CHf CTa CW CRe COs CIr CPt CAu CHg CTl CPb CBi CPo CAt Rn
Fr CRa Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
CLa CCe CPr CNd CPm CSm CEu CGd CTb CDy CHo CEr CTm CYb CLu
Ac CTh CPa CU CNp CPu CAm CCm CBk CCf CEs Fm Md No Lr
Chemical bonds to carbon
Core organic chemistry Many uses in chemistry
Academic research, but no widespread use Bond unknown

References

  1. March, Jerry (1985), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.), New York: Wiley, ISBN 0-471-85472-7 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.