Cantic cubic honeycomb
Cantic cubic honeycomb | |
---|---|
Type | Uniform honeycomb |
Schläfli symbol | h2{4,3,4} |
Coxeter-Dynkin diagram | = = |
Cells | t{3,4} r{4,3} t{3,3} |
Vertex figure | |
Coxeter groups | [4,31,1], [3[4]], |
Symmetry group | Fm3m (225) |
Dual | half oblate octahedrille |
Properties | vertex-transitive |
The cantic cubic honeycomb or truncated half cubic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of truncated octahedra, cuboctahedra and truncated tetrahedra in a ratio of 1:1:2. Its vertex figure is a rectangular pyramid.
John Horton Conway calls this honeycomb a truncated tetraoctahedrille, and its dual half oblate octahedrille.
Symmetry
It has two different uniform constructions. The construction can be seen with alternately colored truncated tetrahedra.
Symmetry | [4,31,1], =<[3[4]]> |
[3[4]], |
---|---|---|
Space group | Fm3m (225) | F43m (216) |
Coloring | ||
Coxeter | = | = |
Vertex figure |
It is related to the cantellated cubic honeycomb. Rhombicuboctahedra are reduced to truncated octahedra, and cubes are reduced to truncated tetrahedra.
cantellated cubic |
Cantic cubic |
, , rr{4,3}, r{4,3}, {4,3} |
, , t{3,4}, r{4,3}, t{3,3} |
Related honeycombs
Space group |
Fibrifold | Extended symmetry |
Extended diagram |
Order | Honeycombs |
---|---|---|---|---|---|
Pm3m (221) |
4−:2 | [4,3,4] | ×1 | 1, 2, 3, 4, 5, 6 | |
Fm3m (225) |
2−:2 | [1+,4,3,4] = [4,31,1] |
= |
Half | 7, 11, 12, 13 |
I43m (217) |
4o:2 | [[(4,3,4,2+)]] | Half × 2 | (7), | |
Fd3m (227) |
2+:2 | [[1+,4,3,4,1+]] = [[3[4]]] |
= |
Quarter × 2 | 10, |
Im3m (229) |
8o:2 | [[4,3,4]] | ×2 |
The [4,31,1], , Coxeter group generates 9 permutations of uniform tessellations, 4 with distinct geometry including the alternated cubic honeycomb.
Space group |
Fibrifold | Extended symmetry |
Extended diagram |
Order | Honeycombs |
---|---|---|---|---|---|
Fm3m (225) |
2−:2 | [4,31,1] = [4,3,4,1+] |
= |
×1 | 1, 2, 3, 4 |
Fm3m (225) |
2−:2 | <[1+,4,31,1]> = <[3[4]]> |
= |
×2 | (1), (3) |
Pm3m (221) |
4−:2 | <[4,31,1]> | ×2 |
This honeycomb is one of five distinct uniform honeycombs[1] constructed by the Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:
Space group |
Fibrifold | Square symmetry |
Extended symmetry |
Extended diagram |
Extended order |
Honeycomb diagrams |
---|---|---|---|---|---|---|
F43m (216) |
1o:2 | a1 | [3[4]] | ×1 | (None) | |
Fd3m (227) |
2+:2 | p2 | [[3[4]]] | = |
×2 | 3 |
Fm3m (225) |
2−:2 | d2 | <[3[4]]> = [4,3,31,1] |
= |
×2 | 1, 2 |
Pm3m (221) |
4−:2 | d4 | [2[3[4]]] = [4,3,4] |
= |
×4 | 4 |
Im3m (229) |
8o:2 | r8 | [4[3[4]]] = [[4,3,4]] |
= |
×8 | 5, (*) |
See also
References
Wikimedia Commons has media related to Truncated alternated cubic honeycomb. |
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)
- George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
- Branko Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X.
- Critchlow, Keith (1970). Order in Space: A design source book. Viking Press. ISBN 0-500-34033-1.
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
- A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
- D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions. New York, E. P. Dutton, 1930. 196 pp. (Dover Publications edition, 1958) Chapter X: The Regular Polytopes
- Richard Klitzing, 3D Euclidean Honeycombs, x3x3o *b4o - tatoh - O25
- Uniform Honeycombs in 3-Space: 13-Tatoh