Cantellated 7-demicubes
7-demicube |
Cantellated 7-demicube |
Cantitruncated 7-demicube | |
Orthogonal projections in D7 Coxeter plane |
---|
In seven-dimensional geometry, a cantellated 7-demicube is a convex uniform 7-polytope, being a cantellation of the uniform 7-demicube. There are 2 unique cantellation for the 7-demicube including a truncation.
Cantellated 7-demicube
Cantellated 7-demicube | |
---|---|
Type | uniform polyexon |
Schläfli symbol | t0,2{3,34,1} |
Coxeter-Dynkin diagram | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 16800 |
Vertices | 2240 |
Vertex figure | |
Coxeter groups | D7, [34,1,1] |
Properties | convex |
Alternate names
- Small rhombated hemihepteract (Acronym sirhesa)) (Jonathan Bowers)[1]
Cartesian coordinates
The Cartesian coordinates for the vertices of a cantellated demihepteract centered at the origin are coordinate permutations:
- (±1,±1,±1,±3,±3,±3,±3)
with an odd number of plus signs.
Images
Coxeter plane | B7 | D7 | D6 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [14/2] | [12] | [10] |
Coxeter plane | D5 | D4 | D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Cantitruncated 7-demicube
Cantitruncated 7-demicube | |
---|---|
Type | uniform polyexon |
Schläfli symbol | t0,1,2{3,34,1} |
Coxeter-Dynkin diagram | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 23520 |
Vertices | 6720 |
Vertex figure | |
Coxeter groups | D6, [33,1,1] |
Properties | convex |
Alternate names
- Great rhombated hemihepteract (Acronym girhesa) (Jonathan Bowers)[2]
Cartesian coordinates
The Cartesian coordinates for the vertices of a cantitruncated demihepteract centered at the origin are coordinate permutations:
- (±1,±1,±1,±1,±3,±5,±5)
with an odd number of plus signs.
Images
Coxeter plane | B7 | D7 | D6 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [14/2] | [12] | [10] |
Coxeter plane | D5 | D4 | D3 |
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Related polytopes
This polytope is based on the 7-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.
There are 95 uniform polytopes with D7 symmetry, 63 are shared by the BC6 symmetry, and 32 are unique:
t0(141) |
t0,1(141) |
t0,2(141) |
t0,3(141) |
t0,4(141) |
t0,5(141) |
t0,1,2(141) |
t0,1,3(141) |
t0,1,4(141) |
t0,1,5(141) |
t0,2,3(141) |
t0,2,4(141) |
t0,2,5(141) |
t0,3,4(141) |
t0,3,5(141) |
t0,4,5(141) |
t0,1,2,3(141) |
t0,1,2,4(141) |
t0,1,2,5(141) |
t0,1,3,4(141) |
t0,1,3,5(141) |
t0,1,4,5(141) |
t0,2,3,4(141) |
t0,2,3,5(141) |
t0,2,4,5(141) |
t0,3,4,5(141) |
t0,1,2,3,4(141) |
t0,1,2,3,5(141) |
t0,1,2,4,5(141) |
t0,1,3,4,5(141) |
t0,2,3,4,5(141) |
t0,1,2,3,4,5(141) |
Notes
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Richard Klitzing, 7D, uniform polytopes (polyexa) x3o3o *b3x3o3o3o - sirhesa, x3x3o *b3x3o3o3o - girhesa
External links
- Weisstein, Eric W., "Hypercube", MathWorld.
- Olshevsky, George, Measure polytope at Glossary for Hyperspace.
- Polytopes of Various Dimensions
- Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | BCn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes |