Cantellated 5-cell

From Wikipedia, the free encyclopedia

5-cell

Cantellated 5-cell

Cantitruncated 5-cell
Orthogonal projections in A4 Coxeter plane

In four-dimensional geometry, a cantellated 5-cell is a convex uniform polychoron, being a cantellation (a 2nd order truncation) of the regular 5-cell.

There are 2 unique degrees of runcinations of the 5-cell including with permutations truncations.


Cantellation 5-cell

Cantellated 5-cell

Schlegel diagram with
octahedral cells shown
Type Uniform polychoron
Schläfli symbol t0,2{3,3,3}
Coxeter-Dynkin diagram
Cells 20 5 (3.4.3.4)
5 (3.3.3.3)
10 (3.4.4)
Faces 80 50{3}
30{4}
Edges 90
Vertices 30
Vertex figure
Irreg. triangular prism
Symmetry group A4, [3,3,3], order 120
Properties convex, isogonal
Uniform index 3 4 5

The cantellated 5-cell is a uniform polychoron. It has 30 vertices, 90 edges, 80 faces, and 20 cells. The cells are 5 cuboctahedra, 5 octahedra, and 10 triangular prisms. Each vertex is surrounded by 2 cuboctahedra, 2 triangular prisms, and 1 octahedron; the vertex figure is a nonuniform triangular prism.

Alternate names

  • Cantellated pentachoron
  • Cantellated 4-simplex
  • (small) prismatodispentachoron
  • Rectified dispentachoron
  • Small rhombated pentachoron (Acronym: Srip) (Jonathan Bowers)

Images

orthographic projections
Ak
Coxeter plane
A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Wireframe

Ten triangular prisms colored green

Five octahedra colored blue

Coordinates

The Cartesian coordinates of the vertices of the origin-centered cantellated 5-cell having edge length 2 are:

\left(2{\sqrt  {{\frac  {2}{5}}}},\ 2{\sqrt  {{\frac  {2}{3}}}},\ {\frac  {1}{{\sqrt  {3}}}},\ \pm 1\right)
\left(2{\sqrt  {{\frac  {2}{5}}}},\ 2{\sqrt  {{\frac  {2}{3}}}},\ {\frac  {-2}{{\sqrt  {3}}}},\ 0\right)
\left(2{\sqrt  {{\frac  {2}{5}}}},\ 0,\ \pm {\sqrt  {3}},\ \pm 1\right)
\left(2{\sqrt  {{\frac  {2}{5}}}},\ 0,\ 0,\ \pm 2\right)
\left(2{\sqrt  {{\frac  {2}{5}}}},\ -2{\sqrt  {{\frac  {2}{3}}}},\ {\frac  {2}{{\sqrt  {3}}}},\ 0\right)
\left(2{\sqrt  {{\frac  {2}{5}}}},\ -2{\sqrt  {{\frac  {2}{3}}}},\ {\frac  {-1}{{\sqrt  {3}}}},\ \pm 1\right)
\left({\frac  {-1}{{\sqrt  {10}}}},\ {\sqrt  {{\frac  {3}{2}}}},\ \pm {\sqrt  {3}},\ \pm 1\right)
\left({\frac  {-1}{{\sqrt  {10}}}},\ {\sqrt  {{\frac  {3}{2}}}},\ 0,\ \pm 2\right)
\left({\frac  {-1}{{\sqrt  {10}}}},\ {\frac  {-1}{{\sqrt  {6}}}},\ {\frac  {2}{{\sqrt  {3}}}},\ \pm 2\right)
\left({\frac  {-1}{{\sqrt  {10}}}},\ {\frac  {-1}{{\sqrt  {6}}}},\ {\frac  {-4}{{\sqrt  {3}}}},\ 0\right)
\left({\frac  {-1}{{\sqrt  {10}}}},\ {\frac  {-5}{{\sqrt  {6}}}},\ {\frac  {1}{{\sqrt  {3}}}},\ \pm 1\right)
\left({\frac  {-1}{{\sqrt  {10}}}},\ {\frac  {-5}{{\sqrt  {6}}}},\ {\frac  {-2}{{\sqrt  {3}}}},\ 0\right)
\left(-3{\sqrt  {{\frac  {2}{5}}}},\ 0,\ 0,\ 0\right)\pm \left(0,\ {\sqrt  {{\frac  {2}{3}}}},\ {\frac  {2}{{\sqrt  {3}}}},\ 0\right)
\left(-3{\sqrt  {{\frac  {2}{5}}}},\ 0,\ 0,\ 0\right)\pm \left(0,\ {\sqrt  {{\frac  {2}{3}}}},\ {\frac  {-1}{{\sqrt  {3}}}},\ \pm 1\right)

The vertices of the cantellated 5-cell can be most simply positioned in 5-space as permutations of:

(0,0,1,1,2)

This construction is from the positive orthant facet of the cantellated 5-orthoplex.

Cantitruncated 5-cell

Cantitruncated 5-cell

Schlegel diagram with Truncated tetrahedral cells shown
Type Uniform polychoron
Schläfli symbol t0,1,2{3,3,3}
Coxeter-Dynkin diagram
Cells 20 5 (4.6.6)
10 (3.4.4)
 5 (3.6.6)
Faces 80 20{3}
30{4}
30{6}
Edges 120
Vertices 60
Vertex figure
sphenoid
Symmetry group A4, [3,3,3], order 120
Properties convex, isogonal
Uniform index 6 7 8

The cantitruncated 5-cell is a uniform polychoron. It is composed of 60 vertices, 120 edges, 80 faces, and 20 cells. The cells are: 5 truncated octahedra, 10 triangular prisms, and 5 truncated tetrahedra. Each vertex is surrounded by 2 truncated octahedra, one triangular prism, and one truncated tetrahedron.

Alternative names

  • Cantitruncated pentachoron
  • Cantitruncated 4-simplex
  • Great prismatodispentachoron
  • Truncated dispentachoron
  • Great rhombated pentachoron (Acronym: grip) (Jonathan Bowers)

Images

orthographic projections
Ak
Coxeter plane
A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Stereographic projection with its 10 triangular prisms.

Cartesian coordinates

The Cartesian coordinates of an origin-centered cantitruncated 5-cell having edge length 2 are:

\left(3{\sqrt  {{\frac  {2}{5}}}},\ \pm {\sqrt  {6}},\ \pm {\sqrt  {3}},\ \pm 1\right)
\left(3{\sqrt  {{\frac  {2}{5}}}},\ \pm {\sqrt  {6}},\ 0,\ \pm 2\right)
\left(3{\sqrt  {{\frac  {2}{5}}}},\ 0,\ 0,\ 0\right)\pm \left(0,\ {\sqrt  {{\frac  {2}{3}}}},\ {\frac  {5}{{\sqrt  {3}}}},\ \pm 1\right)
\left(3{\sqrt  {{\frac  {2}{5}}}},\ 0,\ 0,\ 0\right)\pm \left(0,\ {\sqrt  {{\frac  {2}{3}}}},\ {\frac  {-1}{{\sqrt  {3}}}},\ \pm 3\right)
\left(3{\sqrt  {{\frac  {2}{5}}}},\ 0,\ 0,\ 0\right)\pm \left(0,\ {\sqrt  {{\frac  {2}{3}}}},\ {\frac  {-4}{{\sqrt  {3}}}},\ \pm 2\right)
\left({\frac  {1}{{\sqrt  {10}}}},\ {\frac  {5}{{\sqrt  {6}}}},\ {\frac  {5}{{\sqrt  {3}}}},\ \pm 1\right)
\left({\frac  {1}{{\sqrt  {10}}}},\ {\frac  {5}{{\sqrt  {6}}}},\ {\frac  {-1}{{\sqrt  {3}}}},\ \pm 3\right)
\left({\frac  {1}{{\sqrt  {10}}}},\ {\frac  {5}{{\sqrt  {6}}}},\ {\frac  {-4}{{\sqrt  {3}}}},\ \pm 2\right)
\left({\frac  {1}{{\sqrt  {10}}}},\ -{\sqrt  {{\frac  {3}{2}}}},\ {\sqrt  {3}},\ \pm 3\right)
\left({\frac  {1}{{\sqrt  {10}}}},\ -{\sqrt  {{\frac  {3}{2}}}},\ -2{\sqrt  {3}},\ 0\right)
\left({\frac  {1}{{\sqrt  {10}}}},\ {\frac  {-7}{{\sqrt  {6}}}},\ {\frac  {2}{{\sqrt  {3}}}},\ \pm 2\right)
\left({\frac  {1}{{\sqrt  {10}}}},\ {\frac  {-7}{{\sqrt  {6}}}},\ {\frac  {-4}{{\sqrt  {3}}}},\ 0\right)
\left(-2{\sqrt  {{\frac  {2}{5}}}},\ 2{\sqrt  {{\frac  {2}{3}}}},\ {\frac  {4}{{\sqrt  {3}}}},\ \pm 2\right)
\left(-2{\sqrt  {{\frac  {2}{5}}}},\ 2{\sqrt  {{\frac  {2}{3}}}},\ {\frac  {1}{{\sqrt  {3}}}},\ \pm 3\right)
\left(-2{\sqrt  {{\frac  {2}{5}}}},\ 2{\sqrt  {{\frac  {2}{3}}}},\ {\frac  {-5}{{\sqrt  {3}}}},\ \pm 1\right)
\left(-2{\sqrt  {{\frac  {2}{5}}}},\ 0,\ {\sqrt  {3}},\ \pm 3\right)
\left(-2{\sqrt  {{\frac  {2}{5}}}},\ 0,\ -2{\sqrt  {3}},\ 0\right)
\left(-2{\sqrt  {{\frac  {2}{5}}}},\ -4{\sqrt  {{\frac  {2}{3}}}},\ {\frac  {1}{{\sqrt  {3}}}},\ \pm 1\right)
\left(-2{\sqrt  {{\frac  {2}{5}}}},\ -4{\sqrt  {{\frac  {2}{3}}}},\ {\frac  {-2}{{\sqrt  {3}}}},\ 0\right)
\left({\frac  {-9}{{\sqrt  {10}}}},\ {\sqrt  {{\frac  {3}{2}}}},\ \pm {\sqrt  {3}},\ \pm 1\right)
\left({\frac  {-9}{{\sqrt  {10}}}},\ {\sqrt  {{\frac  {3}{2}}}},\ 0,\ \pm 2\right)
\left({\frac  {-9}{{\sqrt  {10}}}},\ {\frac  {-1}{{\sqrt  {6}}}},\ {\frac  {2}{{\sqrt  {3}}}},\ \pm 2\right)
\left({\frac  {-9}{{\sqrt  {10}}}},\ {\frac  {-1}{{\sqrt  {6}}}},\ {\frac  {-4}{{\sqrt  {3}}}},\ 0\right)
\left({\frac  {-9}{{\sqrt  {10}}}},\ {\frac  {-5}{{\sqrt  {6}}}},\ {\frac  {1}{{\sqrt  {3}}}},\ \pm 1\right)
\left({\frac  {-9}{{\sqrt  {10}}}},\ {\frac  {-5}{{\sqrt  {6}}}},\ {\frac  {-2}{{\sqrt  {3}}}},\ 0\right)

These vertices can be more simply constructed on a hyperplane in 5-space, as the permutations of:

(0,0,1,2,3)

This construction is from the positive orthant facet of the cantitruncated 5-orthoplex.


Related polychora

These polytopes are art of a set of 9 uniform polychora constructed from the [3,3,3] Coxeter group.

Name 5-cell truncated 5-cell rectified 5-cell cantellated 5-cell bitruncated 5-cell cantitruncated 5-cell runcinated 5-cell runcitruncated 5-cell omnitruncated 5-cell
Schläfli
symbol
{3,3,3} t0,1{3,3,3} t1{3,3,3} t0,2{3,3,3} t1,2{3,3,3} t0,1,2{3,3,3} t0,3{3,3,3} t0,1,3{3,3,3} t0,1,2,3{3,3,3}
Coxeter-Dynkin
diagram
Schlegel
diagram
A4
Coxeter plane
Graph
A3 Coxeter plane
Graph
A2 Coxeter plane
Graph

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • 1. Convex uniform polychora based on the pentachoron - Model 4, 7, George Olshevsky.
  • Richard Klitzing, 4D, uniform polytopes (polychora) x3o3x3o - srip, x3x3x3o - grip
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.