Caesium chloride
Caesium chloride | |
---|---|
IUPAC name Caesium chloride | |
Other names Cesium chloride | |
Identifiers | |
CAS number | 7647-17-8 |
ChemSpider | 22713 |
UNII | GNR9HML8BA |
EC number | 231-600-2 |
Jmol-3D images | {{#if:[Cs+].[Cl-]|Image 1 |
| |
| |
Properties | |
Molecular formula | CsCl |
Molar mass | 168.36 g/mol |
Appearance | white solid hygroscopic |
Density | 3.99 g/cm3 |
Melting point | 645 °C, 918.15 K |
Boiling point | 1297 °C, 1570.15 K (vaporizes) |
Solubility in water | 1865 g/L[1] |
Solubility | soluble in ethanol[2] |
Band gap | 8.35 eV (80 K)[3] |
Refractive index (nD) | 1.64[4] |
Structure | |
Crystal structure | Caesium chloride (see text), Pm3m, space group No. 221, Pearson symbol cP2 |
Coordination geometry |
simple cubic (interpenetrating) |
Related compounds | |
Other anions | Caesium fluoride Caesium bromide Caesium iodide Caesium astatide |
Other cations | Lithium chloride Sodium chloride Potassium chloride Rubidium chloride |
(verify) (what is: / ?) Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa) | |
Infobox references | |
Caesium chloride or cesium chloride, is the inorganic compound with the formula CsCl. This colorless solid is an important source of caesium ions in a variety of applications. Its crystal structure forms a major structural type where each caesium ion is coordinated by 8 chlorine ions. Caesium chloride crystals are thermally stable, but easily dissolve in water and concentrated hydrochloric acid, and therefore gradually disintegrate in the ambient conditions due to moisture. Caesium chloride occurs naturally in mineral waters and as an impurity in carnallite (up to 0.002%), sylvite and kainite. Less than 20 tonnes of CsCl is produced annually worldwide, mostly from a caesium-bearing mineral pollucite.[5]
Caesium chloride is widely used in isopycnic centrifugation for separating various types of DNA. It is a reagent in analytical chemistry, where it is used to identify ions by the color and morphology of the precipitate. When enriched in radioisotopes, such as 137CsCl or 131CsCl, caesium chloride is used in nuclear medicine applications such as treatment of cancer and diagnosis of myocardial infarction. Another form of cancer treatment was studied using conventional non-radioactive CsCl. Whereas conventional caesium chloride has a rather low toxicity to humans and animals, the radioactive form easily contaminates the environment due to the high solubility of CsCl in water. Spread of 137CsCl powder from a 93-gram container in 1987 in Goiânia, Brazil, resulted in one of the worst-ever radiation spill accidents killing four and directly affecting more than 100,000 people.
Crystal structure
The caesium chloride structure adopts a primitive cubic lattice with a two-atom basis, where both atoms have eightfold coordination. The chloride atoms lie upon the lattice points at the edges of the cube, while the caesium atoms lie in the holes in the center of the cubes. This structure is shared with CsBr and CsI and many binary metallic alloys. In contrast, the other alkaline halides have the sodium chloride (rocksalt) structure.[6] When both ions are similar in size (Cs+ ionic radius 174 pm for this coordination number, Cl− 181 pm) the CsCl structure is adopted, when they are different (Na+ ionic radius 102 pm, Cl− 181 pm) the sodium chloride structure is adopted. Upon heating to above 450 °C, the normal caesium chloride structure (α-CsCl) converts to the β-CsCl form with the rocksalt structure (space group Fm3m).[7][8]
Physical properties
Caesium chloride is colorless in the form of large crystals and white when powdered. It readily dissolves in water with the maximum solubility increasing from 1865 g/L at 20 °C to 2705 g/L at 100 °C.[9][10] The crystals are very hygroscopic and gradually disintegrate at ambient conditions.[11] Caesium chloride does not form hydrates.[12]
Т (°C) | 0 | 10 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S (wt%) | 61.83 | 63.48 | 64.96 | 65.64 | 66.29 | 67.50 | 68.60 | 69.61 | 70.54 | 71.40 | 72.21 | 72.96 |
In contrast to sodium chloride and potassium chloride, caesium chloride readily dissolves in concentrated hydrochloric acid.[14][15] Caesium chloride has also a relatively high solubility in formic acid (1077 g/L at 18 °C) and hydrazine; medium solubility in methanol (31.7 g/L at 25 °C) and low solubility in ethanol (7.6 g/L at 25 °C),[12][15][16] sulfur dioxide (2.95 g/L at 25 °C), ammonia (3.8 g/L at 0 °C),[17] acetone (0.004% at 18 °С), acetonitrile (0.083 g/L at 18 °С),[15] ethylacetates and other complex ethers, butanone, acetophenone, pyridine and chlorobenzene.[18]
Despite its wide band gap of about 8.35 eV at 80 K,[3] caesium chloride weakly conducts electricity, and the conductivity is not electronic but ionic. The conductivity has a value of the order 10−7 S/cm at 300 °C. It occurs through nearest-neighbor jumps of lattice vacancies, and the mobility is much higher for the Cl- than Cs+ vacancies. The conductivity increases with temperature up to about 450 °C, with an activation energy changing from 0.6 to 1.3 eV at about 260 °C. It then sharply drops by two orders of magnitude because of the phase transition from the α-CsCl to β-CsCl phase. The conductivity is also suppressed by application of pressure (about 10 times decrease at 0.4 GPa) which reduces the mobility of lattice vacancies.[8]
Concentration, wt% |
Density, kg/L |
Concentration, mol/L |
refractive index (at 589 nm) |
Freezing point depression, °С relative to water | Viscosity, 10−3 Pa·s |
---|---|---|---|---|---|
0.5 | – | 0.030 | 1.3334 | 0.10 | 1.000 |
1.0 | 1.0059 | 0.060 | 1.3337 | 0.20 | 0.997 |
2.0 | 1.0137 | 0.120 | 1.3345 | 0.40 | 0.992 |
3.0 | 0.182 | 1.3353 | 0.61 | 0.988 | |
4.0 | 1.0296 | 0.245 | 1.3361 | 0.81 | 0.984 |
5.0 | 0.308 | 1.3369 | 1.02 | 0.980 | |
6.0 | 1.0461 | 0.373 | 1.3377 | 1.22 | 0.977 |
7.0 | 0.438 | 1.3386 | 1.43 | 0.974 | |
8.0 | 1.0629 | 0.505 | 1.3394 | 1.64 | 0.971 |
9.0 | 0.573 | 1.3403 | 1.85 | 0.969 | |
10.0 | 1.0804 | 0.641 | 1.3412 | 2.06 | 0.966 |
12.0 | 1.0983 | 0.782 | 1.3430 | 2.51 | 0.961 |
14.0 | 1.1168 | 0.928 | 1.3448 | 2.97 | 0.955 |
16.0 | 1.1358 | 1.079 | 1.3468 | 3.46 | 0.950 |
18.0 | 1.1555 | 1.235 | 1.3487 | 3.96 | 0.945 |
20.0 | 1.1758 | 1.397 | 1.3507 | 4.49 | 0.939 |
22.0 | 1.1968 | 1.564 | 1.3528 | – | 0.934 |
24.0 | 1.2185 | 1.737 | 1.3550 | – | 0.930 |
26.0 | 1.917 | 1.3572 | – | 0.926 | |
28.0 | 2.103 | 1.3594 | – | 0.924 | |
30.0 | 1.2882 | 2.296 | 1.3617 | – | 0.922 |
32.0 | 2.497 | 1.3641 | – | 0.922 | |
34.0 | 2.705 | 1.3666 | – | 0.924 | |
36.0 | 2.921 | 1.3691 | – | 0.926 | |
38.0 | 3.146 | 1.3717 | – | 0.930 | |
40.0 | 1.4225 | 3.380 | 1.3744 | – | 0.934 |
42.0 | 3.624 | 1.3771 | – | 0.940 | |
44.0 | 3.877 | 1.3800 | – | 0.947 | |
46.0 | 4.142 | 1.3829 | – | 0.956 | |
48.0 | 4.418 | 1.3860 | – | 0.967 | |
50.0 | 1.5858 | 4.706 | 1.3892 | – | 0.981 |
60.0 | 1.7886 | 6.368 | 1.4076 | – | 1.120 |
64.0 | 7.163 | 1.4167 | – | 1.238 |
Chemical properties
Caesium chloride completely dissociates upon dissolution in water, and the Cs+ cations are solvated in dilute solution. CsCl converts to caesium sulfate upon being heated in concentrated sulfuric acid or heated with caesium hydrogen sulfate at 550–700 °С:[21]
- 2 CsCl + H2SO4 → Cs2SO4 + 2 HCl
- CsCl + CsHSO4 → Cs2SO4 + HCl
Caesium chloride forms a variety of double salts with other chlorides. Examples include 2CsCl·BaCl2,[22] 2CsCl·CuCl2, CsCl·2CuCl and CsCl·LiCl,[23] and with interhalogen compounds:[24]
- CsCl + ICl3 → Cs[ICl4]
In laboratory, CsCl can be obtained by treating caesium hydroxide, carbonate, caesium bicarbonate, or caesium sulfide with hydrochloric acid:
- CsOH + HCl → CsCl + H2O
- Cs2CO3 + 2 HCl → 2 CsCl + 2 H2O + CO2
Occurrence and production
Caesium chloride occurs naturally as an impurity in the halide minerals carnallite (KMgCl3·6H2O with up to 0.002% CsCl),[25] sylvite (KCl) and kainite (MgSO4·KCl·3H2O),[26] and in mineral waters. For example, the water of Bad Dürkheim spa, which was used in isolation of caesium, contained about 0.17 mg/L of CsCl.[27] None of these minerals are commercially important.
On industrial scale, CsCl is produced from the mineral pollucite, which is powdered and treated with hydrochloric acid at elevated temperature. The extract is treated with antimony chloride, iodine monochloride, or cerium(IV) chloride to give the poorly soluble double salt, e.g.:[28]
- CsCl + SbCl3 → CsSbCl4
Treatment of the double with hydrogen sulfide gives CsCl:[28]
- 2 CsSbCl4 + 3 H2S → 2 CsCl + Sb2S3 + 8 HCl
High-purity CsCl is also produced from recrystallized Cs[ICl2] (and Cs[ICl4]) by thermal decomposition:[29]
- Cs[ICl2] → 2 CsCl + ICl
Only about 20 tonnes of caesium compounds, with a major contribution from CsCl, were being produced annually around the 1970s[30] and 2000s worldwide.[31] Caesium chloride enriched with caesium-137 for radiation therapy applications is produced at a single facility Mayak in the Ural Region of Russia[32] and is sold internationally through a UK dealer. The salt is synthesized at 200 °C because of its hygroscopic nature and sealed in a thimble-shaped steel container which is then enclosed into another steel casing. The sealing is required to protect the salt from moisture.[33]
Uses
Precursor to Cs metal
Caesium chloride is the main precursor to caesium metal by high temperature reduction:[30]
- 2 CsCl + Mg → MgCl2 + Cs
An analogous reaction – heating CsCl with calcium in vacuum in presence of phosphorus was first reported in 1905 by the French chemist M. L. Hackspill[34] and is still used industrially.[30]
Caesium hydroxide is obtained by electrolysis of aqueous caesium chloride solution:[35]
- 2 CsCl + 2 H2O → 2 CsOH + Cl2 + H2
Solute for ultracentrifugation
Caesium chloride is widely used in centrifugation in a technique known as isopycnic centrifugation. Centripetal and diffusive forces establish a density gradient that allow separation of mixtures on the basis of their molecular density. This technique allows separation of DNA of different densities (e.g. DNA fragments with differing A-T or G-C content).[30] This application requires a solution with high density and yet relatively low viscosity, and CsCl suits it because of its high solubility in water, high density owing to the large mass of Cs, as well as low viscosity and high stability of CsCl solutions.[28]
Organic chemistry
Caesium chloride is rarely used in organic chemistry. It can act as a phase transfer catalyst reagent in selected reactions. One of these reactions is the synthesis of glutamic acid derivatives
where TBAB is tetrabutylammonium bromide (interphase catalyst) and CPME is a cyclopentyl methyl ether (solvent).[36]
Another reaction is substitution of tetranitromethane[37]
where DMF is dimethylformamide (solvent).
Analytical chemistry
Caesium chloride is a reagent in traditional analytical chemistry used for detecting inorganic ions via the color and morphology of the precipitates.[38] Quantitative concentration measurement of some of these ions, e.g. Mg2+, with inductively coupled plasma mass spectrometry, is used to evaluate the hardness of water.[39]
Ion | Accompanying reagents | Residue | Morphology | Detection limit (µg) |
---|---|---|---|---|
AsO33− | KI | Cs2[AsI5] or Cs3[AsI6] | Red hexagons | 0.01 |
Au3+ | AgCl, HCl | Cs2Ag[AuCl6] | Gray-black crosses, four and six-beamed stars | 0.01 |
Au3+ | NH4SCN | Cs[Au(SCN)4] | Orange-yellow needles | 0.4 |
Bi3+ | KI, HCl | Cs2[BiI5] or 2.5H2O | Red hexagons | 0.13 |
Cu2+ | (CH3COO)2Pb, CH3COOH, KNO2 | Cs2Pb[Cu(NO2)6] | Small black cubes | 0.01 |
In3+ | — | Cs3[InCl6] | Small octahedra | 0.02 |
[IrCl6]3− | — | Cs2[IrCl6] | Small dark-red octahedra | – |
Mg2+ | Na2HPO4 | CsMgPO4 or 6H2O | Small tetrahedra | – |
Pb2+ | KI | Cs[PbI3] | Yellow-green needles | 0.01 |
Pd2+ | NaBr | Cs2[PdBr4] | Dark-red needles and prisms | – |
[ReCl4]− | — | Cs[ReCl4] | Dark-red rhombs, bipyramids | 0.2 |
[ReCl6]2− | — | Cs2[ReCl6] | Small yellow-green octahedra | 0.5 |
ReO4− | — | CsReO4 | Tetragonal bipyramids | 0.13 |
Rh3+ | KNO2 | Cs3[Rh(NO2)6] | Yellow cubes | 0.1 |
Ru3+ | — | Cs3[RuCl6] | Pink needles | – |
[RuCl6]2− | — | Cs2[RuCl6] | Small dark-red crystals | 0.8 |
Sb3+ | — | Cs2[SbCl5]·nH2O | Hexagons | 0.16 |
Sb3+ | NaI | Cs[SbI4] or Cs2[SbI5] | Red hexagons | 0.1 |
Sn4+ | — | Cs2[SnCl6] | Small octahedra | 0.2 |
TeO33− | HCl | Cs2[TeCl6] | Light yellow octahedra | 0.3 |
Tl3+ | NaI | Cs[TlI4] | Orange-red hexagons or rectangles | 0.06 |
It is also used for detection of the following ions:[40]
Ion | Accompanying reagents | Detection | Detection limit (µg/mL) |
---|---|---|---|
Al3+ | K2SO4 | Colorless crystals form in neutral media after evaporation | 0.01 |
Ga3+ | KHSO4 | Colorless crystals form upon heating | 0.5 |
Cr3+ | KHSO4 | Pale-violet crystals precipitate in slightly acidic media | 0.06 |
Medicine
Medical properties of caesium chloride were studied back in 1888 by Ivan Pavlov and S. S. Botkin. They found that CsCl and RbCl induce long-term narrowing of the blood vessels (vasoconstriction) and the associated increase in the blood pressure (hypertension), stimulating the cardiovascular activity. These properties were then applied in the treatment of cardiovascular diseases.[41]
Later research indicated that CsCl alleviates cardiac dysrhythmia and that the life expectancy is higher in regions characterized by elevated levels of CsCl in water and food. Preliminary results indicate that CsCl can be used in the treatment of depressions.[42] The neurological action of CsCl is related to the protection of neurons from apoptosis and activation of caspase 3 caused by reduced potassium content.[43]
Several reports suggested that non-radioactive caesium chloride can be used in a complex treatment of some forms of cancer.[42][44][45] However, it has been linked to the deaths of over 50 patients, when it was used as part of a scientifically unvalidated cancer treatment.[46] The American Cancer Society state that "available scientific evidence does not support claims that non-radioactive cesium chloride supplements have any effect on tumors."[47]
Nuclear medicine and radiography
Caesium chloride composed of radioisotopes such as 137CsCl and 131CsCl,[48][49] is used in nuclear medicine, including treatment of cancer (brachytherapy) and diagnosis of myocardial infarction.[50][51] In the production of radioactive sources, it is normal to choose a chemical form of the radioisotope which would not be readily dispersed in the environment in the event of an accident. For instance, radiothermal generators (RTGs) often use strontium titanate, which is insoluble in water. For teletherapy sources, however, the radioactive density (Ci in a given volume) needs to be very high, which is not possible with known insoluble caesium compounds. A thimble-shaped container of radioactive caesium chloride provides the active source.
Miscellaneous applications
Caesium chloride is used in the preparation of electrically conducting glasses[49][52] and screens of cathode ray tubes.[30] In conjunction with rare gases CsCl is used as a non-toxic reagent in excimer lamps: a gas-discharge source of ultraviolet light which uses, for example, electrically excited XeCl excimer molecules.[53] Other uses include activation of electrodes in welding;[54] manufacture of mineral water, beer[55] and drilling muds;[56] repellents[57] and high-temperature solders.[58] High-quality CsCl single crystals have a wide transparency range from UV to the infrared and therefore had been used for cuvettes, prisms and windows in optical spectrometers;[30] this use was discontinued with the development of less hygroscopic materials.
CsCl is a potent inhibitor of HCN channels which carry the h-current in excitable cells such as neurons.[59] It can therefore be useful as a tool in electrophyisiology experiments in neuroscience.
Toxicity
Caesium chloride has a low toxicity to human and animals.[60] Its median lethal dose (LD50) in mice is 2300 mg per kilogram of body weight for oral administration and 910 mg/kg for intravenous injection.[61] The toxicity of CsCl is related to its ability to lower the concentration of potassium in the body and partly substitute it in biochemical processes.[62] Caesium chloride powder can irritate the mucous membranes and cause asthma.[56]
Because of its high solubility in water, caesium chloride is highly mobile and can even diffuse through concrete. This is a drawback for its radioactive form which urges a search for more stable radioisotope materials. Commercial sources of radioactive caesium chloride are well sealed in a double steel enclosure.[33] However, in the Goiânia accident in Brazil, such a source containing about 93 gram of 137CsCl, was stolen from an abandoned hospital and forced open by two scavengers. The blue glow emitted in the dark by the radioactive caesium chloride attracted the thieves and their relatives who were unaware of the associated dangers and spread the powder. This resulted in one of the worst radiation spill accidents in which 4 people died within a month from the exposure, 20 showed signs of radiation sickness, 249 people were contaminated with radioactive caesium chloride, and about a thousand received a dose exceeding a yearly amount of background radiation. More than 110,000 people overwhelmed the local hospitals, and several city blocks had to be demolished in the cleanup operations. In the first days of the contamination, stomach disorders and nausea due to radiation sickness were experienced by several people, but only after several days one person associated the symptoms with the powder and brought a sample to the authorities.[63][64]
See also
- List of ineffective cancer treatments
References
- ↑ Lide
- ↑ Lide, pp. 4–67, 4–1363
- ↑ 3.0 3.1 Lushchik, A; Feldbach, E; Frorip, A; Ibragimov, K; Kuusmann, I; Lushchik, C (1994). "Relaxation of excitons in wide-gap CsCl crystals". Journal of Physics: Condensed Matter 6 (12): 2357–2366. doi:10.1088/0953-8984/6/12/009.
- ↑ Lide, p. 10-227
- ↑ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 0080379419.
- ↑ Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
- ↑ Plyushev, p. 96
- ↑ 8.0 8.1 Ehrenreich, Henry (1984). Solid state physics: advances in research and applications. Academic Press. pp. 29–31. ISBN 978-0-12-607738-4.
- ↑ Lidin, p. 620
- ↑ Alikbaeva LA, ed. (2005). "Таблица неорганических и координационных соединений". Новый справочник химика и технолога (in Russian). 1. Основные свойства неорганических, органических и элементоорганических соединений. St. Petersburg. ISBN 5-98371-025-7.
- ↑ "ЭСБЕ/Цезий". Brockhaus and Efron Encyclopedic Dictionary. 1890–1907. Retrieved 2011-04-15.
- ↑ 12.0 12.1 Knunyants, I. L, ed. (1998). "Цезия галогениды". Химическая энциклопедия (Chemical encyclopedia) 5. Moscow: Soviet Encyclopedia. p. 657. ISBN 5-85270-310-9.
- ↑ Lide, p. 8-112
- ↑ Turova, N. Ya. (1997). Неорганическая химия в таблицах. Moscow. p. 85.
- ↑ 15.0 15.1 15.2 Plyushev, V.E. and Stepin, B. D (1975). Аналитическая химия рубидия и цезия. Moscow: Nauka. pp. 22–26.
- ↑ Plyushev, p. 97
- ↑ Alikbaeva LA, ed. (2005). "Растворимость неорганических соединений в смешанных и неводных растворителях". Новый справочник химика и технолога (in Russian). Химическое равновесие. Свойства растворов. St. Petersburg. ISBN 5-98371-025-7.
- ↑ Plyushev, V.E. et al. (1976). Bolshakov, K. A., ed. Химия и технология редких и рассеянных элементов 1 (2 ed.). Moscow: Vysshaya Shkola. pp. 101–103.
- ↑ Lide, pp. 8–61,62
- ↑ Lidin, p. 645
- ↑ Lidin, R. A; Molochko V. and Andreeva, L. L. A. (2000). Химические свойства неорганических веществ (3 ed.). Moscow: Khimiya. p. 49. ISBN 5-7245-1163-0.
- ↑ Knunyants, I. L, ed. (1988). "Бария хлорид". Химическая энциклопедия 1. Moscow: Soviet Encyclopedia. p. 463.
- ↑ National Research Council (U.S.). Office of Critical Tables, ed. (1962). Consolidated Index of Selected Property Values: Physical Chemistry and Thermodynamics (Publication 976 ed.). Washington, D.C.: National Academy of Science. p. 271.
- ↑ Knunyants, I. L, ed. (1992). "Полигалогениды". Химическая энциклопедия 3. Moscow: Soviet encyclopedia. pp. 1237–1238. ISBN 5-85270-039-8.
- ↑ Knunyants, I. L, ed. (1998). "Цезий". Химическая энциклопедия (Chemical encyclopedia) 5. Moscow: Soviet Encyclopedia. pp. 654–656. ISBN 5-85270-310-9.
- ↑ Plyushev, pp. 210–211
- ↑ Plyushev, p. 206
- ↑ 28.0 28.1 28.2 "Cesium and Cesium Compounds". Kirk-Othmer Encyclopedia of Chemical Technology 5 (4-th ed.). New York: John Wiley & Sons. 1994. pp. 375–376.
- ↑ Plsyushev, pp. 357–358
- ↑ 30.0 30.1 30.2 30.3 30.4 30.5 Manfred Bick and Horst Prinz "Cesium and Cesium Compounds” in Ullmann’s Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. doi:10.1002/14356007.a06_153 Vol. A6, pp. 153–156.
- ↑ Halka M., Nordstrom B. (2010). Alkali and Alkaline Earth Metals. Infobase Publishing. p. 52. ISBN 978-0-8160-7369-6.
- ↑ Enrique Lima "Cesium: Radionuclide" in Encyclopedia of Inorganic Chemistry, 2006, Wiley-VCH, Weinheim. doi:10.1002/0470862106.ia712
- ↑ 33.0 33.1 National Research Council (U.S.). Committee on Radiation Source Use and Replacement; Nuclear and Radiation Studies Board (January 2008). Radiation source use and replacement: abbreviated version. National Academies Press. pp. 28–. ISBN 978-0-309-11014-3.
- ↑ Hackspill, M. L. (1905). "Sur une nouvelle prepapratíon du rubidium et du cæsium". Comptes rendus hebdomadaires des séances de l'Académie des sciences (in French) 141: 106.
- ↑ Plyushev, p. 90
- ↑ Kano T., Kumano T. and Maruoka K. (2009). "Rate Enhancement of Phase Transfer Catalyzed Conjugate Additions by CsCl". Organic Letters 11 (9): 2023–2025. doi:10.1021/ol900476e. PMID 19348469.
- ↑ Katritzky A. R., Meth-Cohn O., Rees Ch. W. (1995). Volume editor: Gilchrist T. L., ed. Comprehensive Organic Functional Group Transformations. 6: Synthesis: Carbon with Three or Four Attached Heteroatoms (First ed.). New York: Elsevier. p. 283. ISBN 978-0-08-040604-6.
- ↑ Alikbaeva LA, ed. (2005). Новый справочник химика и технолога (in Russian). Аналитическая химия (часть II). Микрокристаллоскопия. St. Petersburg. ISBN 5-98371-025-7.
- ↑ ГОСТ 52407-2005. Вода питьевая. Методы определения жесткости. Moscow: Стандартинформ. 2006.
- ↑ Alikbaeva LA, ed. (2005). Новый справочник химика и технолога (in Russian). Аналитическая химия (часть II). Химические методы обнаружения ионов.(Качественный химический метод анализа). St. Petersburg. ISBN 5-98371-025-7.
- ↑ Цезий, (in Russian)
- ↑ 42.0 42.1 Brewer, AK (1984). "The High pH Therapy for Cancer, Tests on Mice and Humans". Pharmacology, Biochemistry, and Behavior. 21 Suppl 1: 1–5. doi:10.1016/0091-3057(84)90152-7. PMID 6522424.
- ↑ Zhong, J; Yao, W; Lee, W (2007). "Cesium chloride protects cerebellar granule neurons from apoptosis induced by low potassium". International Journal of Developmental Neuroscience 25 (6): 359–365. doi:10.1016/j.ijdevneu.2007.07.003. PMID 17804190.
- ↑ Sartori, HE (1984). "Cesium therapy in cancer patients". Pharmacology, Biochemistry, and Behavior 21 (Suppl 1): 11–3. doi:10.1016/0091-3057(84)90154-0. PMID 6522427.
- ↑ Low, JC; Wasan, KM; Fazli, L; Eberding, A; Adomat, H; Guns, ES (2007). "Assessing the therapeutic and toxicological effects of cesium chloride following administration to nude mice bearing PC-3 or LNCaP prostate cancer xenografts". Cancer chemotherapy and pharmacology 60 (6): 821–9. doi:10.1007/s00280-007-0429-4. PMID 17294190.
- ↑ Wood, Leonie. "'Cured' cancer patients died, court told". The Sydney Morning Herald. 20 November 2010.
- ↑ "Cesium Chloride". Complementary and Alternative Medicine: Herbs, Vitamins, and Minerals. American Cancer Society. 30 November 2008. Retrieved 2011-05-13.
- ↑ Alikbaeva LA, ed. (2005). "11.1. Источники радиоактивных загрязнений". Новый справочник химика и технолога (in Russian). 11. Радиоактивные вещества. Вредные вещества. Гигиенические нормативы. St. Petersburg. ISBN 5-98371-025-7.
- ↑ 49.0 49.1 Cesium. Mineral Commodity Summaries January 2010. U.S. Geological Survey
- ↑ Carrea, JR; Gleason, G; Shaw, J; Krontz, B (1964). "The direct diagnosis of myocardial infarction by photoscanning after administration of cesium-131". American heart journal 68 (5): 627–36. doi:10.1016/0002-8703(64)90271-6. PMID 14222401.
- ↑ McGeehan, John T. (1968). "Cesium 131 Photoscan: Aid in the Diagnosis of Myocardial Infarction". JAMA: the Journal of the American Medical Association 204 (7): 585. doi:10.1001/jama.1968.03140200025006.
- ↑ Tver'yanovich, Y. S. et al. (1998). Glass Phys. Chem. 24: 446.
- ↑ Klenovskii, M.S.; Kel’man, V.A.; Zhmenyak, Yu.V. and Shpenik, Yu.O. (2010). "Electric-discharge UV radiation source based on a Xe-CsCl vapor-gas mixture". Technical Physics 55 (5): 709–714. doi:10.1134/S1063784210050178.
- ↑ "Тугоплавкие и химически активные металлы". Migatronic. Retrieved 2011-02-24.
- ↑ Morris, Ch. G., ed. (1992). "Cesium chloride". Academic Press Dictionary of Science and Technology. San Diego: Academic Press. p. 395. ISBN 0-12-200400-0.
- ↑ 56.0 56.1 "Cesium Chloride MSDS" (pdf). Cesium Fine Chemicals. Cabot Corporation. Retrieved 2011-04-11.
- ↑ Qureshi J. A., Buschman L. L., Throne J. E., Whaley P. M., Ramaswamy S. B. (2004). "Rubidium Chloride and Cesium Chloride Sprayed on Maize Plants and Evaluated for Marking Diatraea grandiosella (Lepidoptera: Crambidae) in Mark–Recapture Dispersal Studies". Environmental Entomology 33 (4): 930–940. doi:10.1603/0046-225X-33.4.930.
- ↑ Kogel, J. E.; Trivedi, N. C. and Barker, J. M, ed. (2006). Industrial Minerals & Rocks: Commodities, Markets, and Uses (7th ed.). Littleton: Society for Mining, Metallurgy, and Exploration. p. 1430. ISBN 978-0-87335-233-8.
- ↑ Biel, Martin; Christian Wahl-Schott, Stylianos Michalakis, and Xiangang Zong (2009). "Hyperpolarization-Activated Cation Channels: From Genes to Function". Physiological Reviews 89 (3): 847–85. doi:10.1152/physrev.00029.2008. PMID 19584315.
- ↑ "Chemical Safety Data: Caesium chloride". Hands-on Science (H-Sci) Project: Chemical Safety Database. Physical and Theoretical Chemistry Laboratory, Oxford University. Retrieved 2011-04-08.
- ↑ "Safety data for caesium chloride". Chemical and Other Safety Information. The Physical and Theoretical Chemistry Laboratory Oxford University. Retrieved 2011-04-08.
- ↑ Lazarev N.V. and Gadaskina, I.D., ed. (1977). Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей (in Russian) 3 (7 ed.). St. Petersburg: Khimiya. pp. 328–329.
- ↑ The Radiological Accident in Goiânia. Vienna: IAEA. 1988. ISBN 92-0-129088-8.. See pp. 1–6 for summary and p. 22 for the source description
- ↑ The Worst Nuclear Disasters, Time Magazine
Bibliography
- Lidin, R. A; Andreeva, L. L. and Molochko V. A. (2006). Константы неорганических веществ: справочник (Inorganic compounds: data book). Moscow. ISBN 5-7107-8085-5.
- Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
- Plyushev, V. E. and Stepin B. D. (1970). Химия и технология соединений лития, рубидия и цезия (in Russian). Moscow: Khimiya.
|