Caecilian

From Wikipedia, the free encyclopedia
Caecilians
Temporal range: 170–0Ma
Lower Jurassic – Recent[1]
Dermophis mexicanus
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Amphibia
Subclass: Lissamphibia
Order: Gymnophiona
J.P. Müller, 1832
Families

Caeciliidae
Chikilidae
Dermophiidae
Herpelidae
Ichthyophiidae
Indotyphlidae
Rhinatrematidae
Scolecomorphidae
Siphonopidae
Typhlonectidae

Distribution of caecilians (in green)

The caecilians are an order (Gymnophiona) of amphibians that superficially resemble earthworms or snakes. They mostly live hidden in the ground, making them the least familiar order of amphibians. All extant caecilians and their closest fossil relatives are grouped as the clade Apoda. They are mostly distributed in the tropics of South and Central America, Africa, and southern Asia. The diets of caecilians are not well known.

Description

Caecilians completely lack limbs, making the smaller species resemble worms, while the larger species, with lengths up to 1.5 m (4 ft 11 in), resemble snakes. Their tails are short or absent, and their cloacae are near the ends of their bodies.[2][3][4]

Their skin is smooth and usually dark-matte, but some species have colorful skins. Inside the skin are calcite scales. Because of these scales, the caecilians were once thought to be related to the fossil Stegocephalia, but they are now believed to be a secondary development, and the two groups are most likely unrelated.[4] The skin also has numerous ring-shaped folds, or annuli, that partially encircle the body, giving them a segmented appearance. Like some other living amphibians, the skin contains glands that secrete a toxin to deter predators.[1] The skin secretions of Siphonops paulensis have been shown to have hemolytic properties.[5]

Caecilians' vision is limited to dark-light perception,[6] and their anatomy is highly adapted for a burrowing lifestyle. They have a strong skull, with a pointed snout used to force their way through soil or mud.[4] In most species, the bones in the skull are reduced in number and fused together, and the mouth is recessed under the head. Their muscles are adapted to pushing their way through the ground, with the skeleton and deep muscles acting as a piston inside the skin and outer muscles. This allows the animal to anchor its hind end in position, and force the head forwards, and then pull the rest of the body up to reach it in waves. In water or very loose mud, caecilians instead swim in an eel-like fashion.[1] Caecilians in the family Typhlonectidae are aquatic, and the largest of their kind. The representatives of this family have a fleshy fin running along the rear section of their bodies, which enhances propulsion in water.[7]

All but the most primitive caecilians have two sets of muscles for closing the jaw, compared with the single pair found in other creatures. These are more highly developed in the most efficient burrowers among the caecilians, and appear to help keep the skull and jaw rigid.[1]

Adapting to their underground life, the eyes are small and covered by skin for protection, which has led to the misconception that they are blind. This is not strictly true, although their sight is limited to simple dark-light perception. All caecilians possess a pair of tentacles, located between their eyes and nostrils. These are probably used for a second olfactory capability, in addition to the normal sense of smell based in the nose.[1]

Except for two lungless species — Atretochoana eiselti[8] and Caecilita iwokramae[9] — all caecilians have lungs, but also use their skin or mouths for oxygen absorption. Often, the left lung is much smaller than the right one, an adaptation to body shape that is also found in snakes.[citation needed]

Distribution

Caecilians are found in wet, tropical regions of Southeast Asia, India, Bangladesh, and Sri Lanka, parts of East and West Africa, the Seychelles Islands in the Indian Ocean, Central America, and in northern and eastern South America. In Africa, caecilians are found from Guinea-Bissau (Geotrypetes) to southern Malawi (Scolecomorphus), with an unconfirmed record from eastern Zimbabwe. They have not been recorded from the extensive areas of tropical forest in central Africa. In South America, they extend through subtropical eastern Brazil well into temperate northern Argentina. They can be seen as far south as Buenos Aires, when they are carried by the flood waters of the Paraná River coming from farther north. Their American range extends north to southern Mexico. The northernmost distribution is of the species Ichthyophis sikkimensis of northern India. Ichthyophis is also found in South China and North Vietnam. In Southeast Asia, they are found as far east as Java, Borneo, and the southern Philippines, but they have not crossed Wallace's line and are not present in Australia or nearby islands.[citation needed]

Taxonomy

Ichthyophis from the San Antonio Zoo

The name caecilian derives from the Latin word caecus, meaning "blind", referring to the small or sometimes nonexistent eyes. The name dates back to the taxonomic name of the first species described by Carolus Linnaeus, which he named Caecilia tentaculata.[4] The order name derives from the Greek words γυμνος (gymnos, naked) and οφις (ophis, snake), as the caecilians were originally thought to be related to snakes.[citation needed]

The most recent classification of caecilians, by Wilkinson et al. (2011), divided the Gymnophiona into 9 families containing nearly 200 species.[10] Since then, a tenth caecilian family has been discovered, Chikilidae.[11][12] This classification is based on a thorough definition of monophyly based on morphological and molecular evidence,[13][14][15][16] and it solves the longstanding problems of paraphyly of the Caeciliidae in previous classifications without an exclusive reliance upon synonymy.[10][17]

The most recent phylogeny of caecilians is based on molecular mitogenomic evidence examined by San Mauro et al. (2014).[18]



Eocaecilia micropodia




Rubricacaecilia monbaroni


Apoda

Rhinatrematidae


 Stegokrotaphia

Ichthyophiidae


 Teresomata

Scolecomorphidae





Chikilidae



Herpelidae






Caeciliidae



Typhlonectidae





Indotyphlidae




Dermophiidae



Siphonopidae











Evolution

Eocaecilia, the earliest known caecilian

Little is known of the evolutionary history of the caecilians, which have left a sparse fossil record. The first fossil, a vertebra dated to the Paleocene, was not discovered until 1972.[19] The putative earliest fossil known comes from the Jurassic period; its primitive genus, Eocaecilia, had small limbs and well-developed eyes.[20] In their 2008 description of the fossil batrachian Gerobatrachus,[21] Anderson and co-authors suggested that caecilians arose from the Lepospondyl group of ancestral tetrapods, and may be more closely related to amniotes than to frogs and salamanders, which arose from Temnospondyl ancestors. Numerous groups of lepospondyls evolved reduced limbs, elongated bodies, and burrowing behaviors, and morphological studies on Permian and Carboniferous lepospondyls have placed the early caecilian (Eocaecilia) among these groups.[22] Divergent origins of caecilians and other extant amphibians may help explain the slight discrepancy between fossil dates for the origins of modern amphibia, which suggest Permian origins, and the earlier dates, in the Carboniferous, predicted by some molecular clock studies of DNA sequences. Most morphological and molecular studies of extant amphibians, however, support monophyly for caecilians, frogs, and salamanders, and the most recent molecular study based on multi-locus data suggest a Late Carboniferous–Early Permian origin of extant amphibians.[23]

Behavior

Reproduction

Maternal care in Ichthyophis

Caecilians are the only order of amphibians to use internal insemination exclusively (although most salamanders have internal fertilization and the tailed frog in the US uses a tail-like appendage for internal insemination in its fast-flowing water environment). The male caecilians have a penis-like organ, the phallodeum, which is inserted into the cloaca of the female for two to three hours. About 25% of the species are oviparous (egg-laying); the eggs are guarded by the female. For some species, the young caecilians are already metamorphosed when they hatch; others hatch as larvae. The larvae are not fully aquatic, but spend the daytime in the soil near the water.[1]

About 75% of caecilians are viviparous, meaning they give birth to already-developed offspring. The fetus is fed inside the female with cells lining the oviduct, which they eat with special scraping teeth.

The egg-laying species Boulengerula taitana feeds its young by developing an outer layer of skin, high in fat and other nutrients, which the young peel off with modified teeth. This allows them to grow by up to 10 times their own weight in a week. The skin is consumed every three days, the time it takes for a new layer to grow, and the young have only been observed to eat it at night. It was formerly thought that the juveniles subsisted only on a liquid secretion from their mothers.[24][25]

Some larvae, such as those of Typhlonectes, are born with enormous external gills which are shed almost immediately. Ichthyophis is oviparous and known to show maternal care, with the mother guarding the eggs until they hatch.[4]

Diet

The diets of caecilians are not well known. Mature caecilians seem to feed mostly on insects and other invertebrates found in the habitat of the respective species. The stomach contents of 14 specimens of Boulengerula taitana consisted of mostly unidentifable organic material and plant remains. Where identifiable remains were most abundant, they were found to be termite heads.[26] While the undefinable organic material may show the caecilians eat detritus, the remains may be from earthworms. Caecilians in captivity can be easily fed with earthworms, and worms are also common in the habitat of many caecilian species.[citation needed]

See also

References

Specific references:

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Nussbaum, Ronald A. (1998). Cogger, H.G. & Zweifel, R.G., ed. Encyclopedia of Reptiles and Amphibians. San Diego: Academic Press. pp. 52–59. ISBN 0-12-178560-2. 
  2. Goin, C.J.; Goin, O.B.; Zug, G.W. 1978. Introduction to Herpetology, Third Edition. San Francisco: W.H. Freeman and Company. xi + 378 pp. ISBN 0-7167-0020-4. (Order Gymnophiona, p. 201.)
  3. Himstedt, Werner. Die Blindwühlen (in German). Magdeburg: Westarp Wistshaften. ISBN 3-89432-434-1. 
  4. 4.0 4.1 4.2 4.3 4.4  Chisholm, Hugh, ed. (1911). "Caecilia". Encyclopædia Britannica (11th ed.). Cambridge University Press 
  5. Elisabeth N. Ferroni Schwartz, Carlos A. Schwartz, Antonio Sebben (1998). "Occurrence of hemolytic activity in the skin secretion of the caecilian Siphonops paulensis". Natural Toxins 6 (5): 179–182. doi:10.1002/(SICI)1522-7189(199809/10)6:5<179::AID-NT20>3.0.CO;2-M. PMID 10398514. 
  6. S. M. Mohun, W. L. Davies J. K. Bowmaker, D. Pisani, W. Himstedt, D. J. Gower, D. M. Hunt, M. Wilkinson (2010). "Identification and characterization of visual pigments in caecilians (Amphibia: Gymnophiona), an order of limbless vertebrates with rudimentary eyes". The Journal of Experimental Biology 213 (20): 3586–3592. doi:10.1242/jeb.045914. 
  7. Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals. Greenwood Press. 
  8. "Atretochoana eiselti". Natural History Museum. Retrieved 22 February 2012. 
  9. Kaplan, Matt (18 November 2009). "Giant Lungless "Worm" Found Living on Land". National Geographic News. Retrieved 22 February 2012. 
  10. 10.0 10.1 Wilkinson, M.; San Mauro, D.; Sherratt, E.; Gower, D.J. (2011). "A nine-family classification of caecilians (Amphibia: Gymnophiona)". Zootaxa 2874: 41–64. 
  11. Kamei, R.G.; San Mauro, D.; Gower, D.J.; Van Bocxlaer, I.; Sherratt, E.; Thomas, A.; Babu, S.; Bossuyt, F.; Wilkinson, M.; Biju, S.D. (2012). "Discovery of a new family of amphibians from Northeast India with ancient links to Africa". Proc. R. Soc. B. doi:10.1098/rspb.2012.0150. 
  12. "New amphibian family found in India". CBC News. Associated Press. 21 February 2012. 
  13. San Mauro, D.; Gower, D.J.; Oommen, O.V.; Wilkinson, M.; Zardoya, R. (2004). "Phylogeny of caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1". Molecular Phylogenetics and Evolution 33: 413–427. doi:10.1016/j.ympev.2004.05.014. 
  14. San Mauro, D.; Gower, D.J.; Massingham, T.; Wilkinson, M.; Zardoya, R.; Cotton, J.A. (2009). "Experimental design in caecilian systematics: phylogenetic information of mitochondrial genomes and nuclear rag1". Systematic Biology 58: 425–438. doi:10.1093/sysbio/syp043. 
  15. Zhang, P.; Wake, M.H. (2009). "A mitogenomic perspective on the phylogeny and biogeography of living caecilians (Amphibia: Gymnophiona)". Molecular Phylogenetics and Evolution 53: 479–491. doi:10.1016/j.ympev.2009.06.018. 
  16. San Mauro, D.; Gower, D.J.; Cotton, J.A.; Zardoya, R.; Wilkinson, M.; Massingham, T. (2012). "Experimental design in phylogenetics: testing predictions from expected information". Systematic Biology 61 (4): 661–674. doi:10.1093/sysbio/sys028. 
  17. Frost, Darrel R.; Grant, Taran; Faivovich, Julián; Bain, Raoul H.; Haas, Alexander; Haddad, Célio F.B.; De Sá, Rafael O.; Channing, Alan et al. (2006). "The Amphibian Tree of Life". Bulletin of the American Museum of Natural History 297: 1–370, appendices. doi:10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2. ISSN 0003-0090. 
  18. San Mauro, D.; Gower, D.J.; Müller, H.; Loader, S.P.; Zardoya, R.; Nussbaum, R.A.; Wilkinson, M. (2014). "Life-history evolution and mitogenomic phylogeny of caecilian amphibians". Molecular Phylogenetics and Evolution. doi:10.1016/j.ympev.2014.01.009. 
  19. Estes, Richard; Wake, Marvalee H. (22 September 1972). "The First Fossil Record of Caecilian Amphibians". Nature 239 (5369): 228. doi:10.1038/239228b0. Retrieved 18 August 2009. 
  20. Jenkins, Parish A.; Walsh, Denis M. (16 September 1993). "An Early Jurassic caecilian with limbs". Nature 365 (6443): 246. doi:10.1038/365246a0. Retrieved 18 August 2008. 
  21. Anderson, Jason S.; Reisz, Robert R.; Scott, Diane; Fröbisch, Nadia B.; Sumida, Stuart S. (2008). "A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders". Nature 453 (7194): 515–8. doi:10.1038/nature06865. PMID 18497824. 
  22. Huttenlocker, A. K.; Pardo, J. D.; Small, B. J.; Anderson, J. S. (2013). "Cranial morphology of recumbirostrans (Lepospondyli) from the Permian of Kansas and Nebraska, and early morphological evolution inferred by micro-computed tomography". Journal of Vertebrate Paleontology 33 (3): 540. doi:10.1080/02724634.2013.728998
  23. San Mauro, D. (2010). "A multilocus timescale for the origin of extant amphibians". Molecular Phylogenetics and Evolution 56 (2): 554–561. doi:10.1016/j.ympev.2010.04.019. PMID 20399871. 
  24. Kupfer, Alex; Muller, Hendrik; Antoniazzi, Marta M.; Jared, Carlos; Greven, Hartmut; Nussbaum, Ronald A.; Wilkinson, Mark (2006). "Parental investment by skin feeding in a caecilian amphibian". Nature 440 (7086): 926–929. doi:10.1038/nature04403. PMID 16612382. 
  25. Vince, Gaia (12 April 2006). "'Yummy mummy' worms feed their skin to offspring". New Scientist. 
  26. Hebrard, J.J.; G.M.O. Maloiy, D.M.I. Al-Liangana (1992). "Notes on the habitat and diet of Afrocaecilia taitana". J. Herpetol. (Society for the Study of Amphibians and Reptiles) 26 (4): 513–515. doi:10.2307/1565136. JSTOR 1565136. 

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.