Box spline

From Wikipedia, the free encyclopedia

In the mathematical fields of numerical analysis and approximation theory, box splines are piecewise polynomial functions of several variables.[1] Box splines are considered as a multivariate generalization of basis splines (B-splines) and are generally used for multivariate approximation/interpolation. Geometrically, a box spline is the shadow (X-ray) of a hypercube projected down to a lower dimensional space.[2] Box splines and simplex splines are well studied special cases of polyhedral splines which are defined as shadows of general polytopes.

Definition

A box spline is a multivariate function ({\mathbb  {R}}^{d}\to {\mathbb  {R}}) defined for a set of vectors, \xi \in {\mathbb  {R}}^{d}, usually gathered in a matrix {\mathbf  {\Xi }}:=\left[\xi _{1}\dots \xi _{N}\right].

When the number of vectors is the same as the dimension of the domain (i.e., N=d) then the box spline is simply the (normalized) indicator function of the parallelepiped formed by the vectors in {\mathbf  {\Xi }}:

M_{{{\mathbf  {\Xi }}}}({\mathbf  {x}}):={\frac  {1}{\mid {\det {\Xi }}\mid }}\chi _{{{\mathbf  {\Xi }}}}({\mathbf  {x}})={\begin{cases}{\frac  {1}{\mid {\det {\Xi }}\mid }}&{\mathbf  {x}}=\sum _{{n=1}}^{d}{t_{n}\xi _{n}}{\text{ for some }}0\leq t_{n}<1\\0&{\text{otherwise}}\end{cases}}.

Adding a new direction, \xi , to {\mathbf  {\Xi }}, or generally when N>d, the box spline is defined recursively:[1]

M_{{{\mathbf  {\Xi }}\cup \xi }}({\mathbf  {x}})=\int _{0}^{1}{M_{{{\mathbf  {\Xi }}}}({\mathbf  {x}}-t\xi )\,{{\rm {d}}}t}.
Examples of bivariate box splines corresponding to 1, 2, 3 and 4 vectors in 2-D.

The box spline M_{{{\mathbf  {\Xi }}}} can be interpreted as the shadow of the indicator function of the unit hypercube in {\mathbb  {R}}^{N} when projected down into {\mathbb  {R}}^{d}. In this view, the vectors \xi \in {\mathbf  {\Xi }} are the geometric projection of the standard basis in {\mathbb  {R}}^{N} (i.e., the edges of the hypercube) to {\mathbb  {R}}^{d}.

Considering tempered distributions a box spline associated with a single direction vector is a Dirac-like generalized function supported on t\xi for 0\leq t<1. Then the general box spline is defined as the convolution of distributions associated the single-vector box splines:[3]

M_{{{\mathbf  {\Xi }}}}=M_{{\xi _{1}}}\ast M_{{\xi _{2}}}\dots \ast M_{{\xi _{N}}}.

Properties

  • Let \kappa be the minimum number of directions whose removal from \Xi makes the remaining directions not span {\mathbb  {R}}^{d}. Then the box spline has \kappa -2 degrees of continuity: M_{{{\mathbf  {\Xi }}}}\in C^{{\kappa -2}}({\mathbb  {R}}^{d}).[1]
  • When N\geq d (and vectors in \Xi span {\mathbb  {R}}^{d}) the box spline is a compactly supported function whose support is a zonotope in {\mathbb  {R}}^{d} formed by the Minkowski sum of the direction vectors {\xi }\in {\mathbf  {\Xi }}.
  • Since zonotopes are centrally symmetric, the support of the box spline is symmetric with respect to its center: {\mathbf  {c}}_{\Xi }:={\frac  {1}{2}}\sum _{{n=1}}^{N}\xi _{n}.
{\hat  {M}}_{{\Xi }}(\omega )=\exp {(-j{\mathbf  {c}}_{{\Xi }}\cdot \omega )}\prod _{{n=1}}^{N}{{{\rm {sinc}}}(\xi _{n}\cdot \omega )}.

Applications

Box splines have been useful in characterization of hyperplane arrangements.[4] Also, box splines can be used to compute the volume of polytopes.[5]

In the context of multidimensional signal processing, box splines provide a flexible framework for designing (non-separable) basis functions acting as multivariate interpolation kernels (reconstruction filters) geometrically tailored to non-Cartesian sampling lattices. This flexibility makes box splines suitable for designing (non-separble) interpolation filters for crystallographic lattices which are optimal[6] from the information-theoretic aspects for sampling multidimensional functions. Optimal sampling lattices have been studied in higher dimensions.[6] Generally, optimal sphere packing and sphere covering lattices[7] are useful for sampling multivariate functions in 2-D, 3-D and higher dimensions.

For example, in the 2-D setting the three-direction box spline[8] is used for interpolation of hexagonally sampled images. In the 3-D setting, four-direction[9] and six-direction[10] box splines are used for interpolation of data sampled on the (optimal) body centered cubic and face centered cubic lattices respectively.[11] The seven-direction box spline can be used for interpolation of data on the Cartesian lattice[12] as well as the body centered cubic lattice.[13] Generalization of the four-[9] and six-direction[10] box splines to higher dimensions[14] can be used to build splines on root lattices. Box splines are key ingredients of hex-splines[15] and Voronoi splines.[16]

They have found applications in high-dimensional filtering, specifically for fast bilateral filtering and non-local means algorithms.[17] Moreover, box splines are used for designing efficient space-variant (i.e., non-convolutional) filters.[18]

Box splines are useful basis functions for image representation in the context of tomographic reconstruction problems as the box spline (function) spaces are closed under X-ray and Radon transforms.[3][19]

References

  1. 1.0 1.1 1.2 C. de Boor, K. Höllig, and S. Riemenschneider. Box Splines, volume 98 of Applied Mathematical Sciences. Springer-Verlag, New York, 1993.
  2. Prautzsch, H.; Boehm, W.; Paluszny, M. (2002). "Box splines". Bézier and B-Spline Techniques. Mathematics and Visualization. p. 239. doi:10.1007/978-3-662-04919-8_17. ISBN 978-3-642-07842-2. 
  3. 3.0 3.1 Entezari, A.; Nilchian, M.; Unser, M. (2012). "A Box Spline Calculus for the Discretization of Computed Tomography Reconstruction Problems". IEEE Transactions on Medical Imaging 31 (8): 1532–1541. doi:10.1109/TMI.2012.2191417. PMID 22453611. 
  4. De Concini, Corrado, and Claudio Procesi. Topics in hyperplane arrangements, polytopes and box-splines. Springer, 2011.
  5. Zhiqiang Xu, Multivariate splines and polytopes, Journal of Approximation Theory, Vol. 163, Issue 3, March 2011.
  6. 6.0 6.1 Kunsch, H. R.; Agrell, E.; Hamprecht, F. A. (2005). "Optimal Lattices for Sampling". IEEE Transactions on Information Theory 51 (2): 634. doi:10.1109/TIT.2004.840864. 
  7. J. H. Conway, N. J. A. Sloane. Sphere packings, lattices and groups. Springer, 1999.
  8. Condat, L.; Van De Ville, D. (2006). "Three-directional box-splines: Characterization and efficient evaluation". IEEE Signal Processing Letters 13 (7): 417. doi:10.1109/LSP.2006.871852. 
  9. 9.0 9.1 Entezari, A.; Van De Ville, D.; Moller, T. (2008). "Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice". IEEE Transactions on Visualization and Computer Graphics 14 (2): 313–328. doi:10.1109/TVCG.2007.70429. PMID 18192712. 
  10. 10.0 10.1 Minho Kim, M.; Entezari, A.; Peters, J. (2008). "Box Spline Reconstruction on the Face-Centered Cubic Lattice". IEEE Transactions on Visualization and Computer Graphics 14 (6): 1523–1530. doi:10.1109/TVCG.2008.115. PMID 18989005. 
  11. Entezari, Alireza. Optimal sampling lattices and trivariate box splines. [Vancouver, BC.]: Simon Fraser University, 2007. <http://summit.sfu.ca/item/8178>.
  12. Entezari, A.; Moller, T. (2006). "Extensions of the Zwart-Powell Box Spline for Volumetric Data Reconstruction on the Cartesian Lattice". IEEE Transactions on Visualization and Computer Graphics 12 (5): 1337–1344. doi:10.1109/TVCG.2006.141. PMID 17080870. 
  13. Minho Kim (2013). "Quartic Box-Spline Reconstruction on the BCC Lattice". IEEE Transactions on Visualization and Computer Graphics 19 (2): 319–330. doi:10.1109/TVCG.2012.130. 
  14. Kim, Minho. Symmetric Box-Splines on Root Lattices. [Gainesville, Fla.]: University of Florida, 2008. <http://uf.catalog.fcla.edu/permalink.jsp?20UF021643670>.
  15. Van De Ville, D.; Blu, T.; Unser, M.; Philips, W.; Lemahieu, I.; Van De Walle, R. (2004). "Hex-Splines: A Novel Spline Family for Hexagonal Lattices". IEEE Transactions on Image Processing 13 (6): 758–772. doi:10.1109/TIP.2004.827231. PMID 15648867. 
  16. Mirzargar, M.; Entezari, A. (2010). "Voronoi Splines". IEEE Transactions on Signal Processing 58 (9): 4572. doi:10.1109/TSP.2010.2051808. 
  17. Baek, J.; Adams, A.; Dolson, J. (2012). "Lattice-Based High-Dimensional Gaussian Filtering and the Permutohedral Lattice". Journal of Mathematical Imaging and Vision 46 (2): 211. doi:10.1007/s10851-012-0379-2. 
  18. Chaudhury, K. N.; MuñOz-Barrutia, A.; Unser, M. (2010). "Fast Space-Variant Elliptical Filtering Using Box Splines". IEEE Transactions on Image Processing 19 (9): 2290–2306. doi:10.1109/TIP.2010.2046953. PMID 20350851. 
  19. Entezari, A.; Unser, M. (2010). "A box spline calculus for computed tomography". 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. p. 600. doi:10.1109/ISBI.2010.5490105. ISBN 978-1-4244-4125-9. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.