Borexino

From Wikipedia, the free encyclopedia

Borexino is a particle physics experiment to study low energy (sub-MeV) solar neutrinos. The name Borexino is the Italian diminutive of BOREX (Boron solar neutrino experiment).[1] The experiment is located at the Laboratori Nazionali del Gran Sasso near the town of L'Aquila, Italy, and is supported by an international collaboration with researchers from Italy, the United States, Germany, France and Russia.[2] The experiment is funded by multiple national agencies including the INFN (National Institute for Nuclear Physics) and the NSF (National Science Foundation).

The detector is a high-purity liquid scintillator calorimeter. It is placed within a stainless steel sphere and shielded by a water tank. The primary aim of the experiment is to make a precise measurement of the beryllium-7 neutrino flux from the sun and comparing it to the Standard solar model prediction. This will allow scientists to further understand the nuclear fusion processes taking place at the core of the Sun and will also help determine properties of neutrino oscillations, including the MSW effect. Other goals of the experiment are to detect boron-8, pp, pep and CNO solar neutrinos as well as antineutrinos from the Earth and nuclear power plants. The project may also be able to detect neutrinos from supernova within our galaxy. Borexino is a member of the Supernova Early Warning System. [3]

Results

As of May 2007, the Borexino detector started data taking.[4] The project first detected solar neutrinos in August 2007. This detection occurred in real-time.[5][6] The data analysis was further extended in 2008.[7]

In 2010, geo-neutrinos from Earth's interior have been observed for the first time. These are anti-neutrinos produced in radioactive decays of uranium, thorium, potassium, and rubidium.[8][9]

In 2011, the experiment published a precision measurement of the beryllium-7 neutrino flux,[10][11] as well as the first evidence for the pep solar neutrinos.[12][13]

In 2012, they published the results of measurements of the speed of CERN Neutrinos to Gran Sasso. The results were consistent with the speed of light.[14] See measurements of neutrino speed.

References

  1. Georg G. Raffelt (1996). "BOREXINO". Stars As Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles. University of Chicago Press. pp. 393–394. ISBN 0226702723. 
  2. "Borexino Experiment". Borexino Official Website. Gran Sasso. Retrieved 12 August 2011. 
  3. Borexino Collaboration (2008). "The Borexino detector at the Laboratori Nazionali del Gran Sasso". Nuclear Instruments and Methods in Physics Research Section A 600 (3): 568–593. arXiv:0806.2400. Bibcode:2009NIMPA.600..568B. doi:10.1016/j.nima.2008.11.076. 
  4. "The Borexino experiment at Gran Sasso begins the data taking". Laboratori Nazionali del Gran Sasso press release. 29 May 2007. 
  5. Emiliano Feresin (2007). "Low-energy neutrinos spotted". Nature news. doi:10.1038/news070820-5. 
  6. Borexino Collaboration (2007). "First real time detection of 7Be solar neutrinos by Borexino". Physics Letters B 658 (4): 101–108. arXiv:0708.2251. Bibcode:2008PhLB..658..101B. doi:10.1016/j.physletb.2007.09.054. 
  7. Borexino Collaboration (2008). "Direct Measurement of the Be7 Solar Neutrino Flux with 192 Days of Borexino Data". Physical Review Letters 101 (9): 091302. arXiv:0805.3843. Bibcode:2008PhRvL.101i1302A. doi:10.1103/PhysRevLett.101.091302. 
  8. "A first look at the Earth interior from the Gran Sasso underground laboratory". INFN press release. 11 March 2010. 
  9. Borexino Collaboration (2010). "Observation of geo-neutrinos". Physics Letters B 687 (4–5): 299–304. arXiv:1003.0284. Bibcode:2010PhLB..687..299B. doi:10.1016/j.physletb.2010.03.051. 
  10. "Precision measurement of the beryllium solar neutrino flux and its day/night asymmetry, and independent validation of the LMA-MSW oscillation solution using Borexino-only data.". Borexino Collaboration press release. 11 April 2011. 
  11. Borexino Collaboration (2011). "Precision Measurement of the Be7 Solar Neutrino Interaction Rate in Borexino". Physical Review Letters 107 (14): 141302. arXiv:1104.1816. Bibcode:2011PhRvL.107n1302B. doi:10.1103/PhysRevLett.107.141302. 
  12. "Borexino Collaboration succeeds in spotting pep neutrinos emitted from the sun". PhysOrg.com. 9 February 2012. 
  13. Borexino Collaboration (2011). "First Evidence of pep Solar Neutrinos by Direct Detection in Borexino". Physical Review Letters 108 (5): 051302. arXiv:1110.3230. Bibcode:2012PhRvL.108e1302B. doi:10.1103/PhysRevLett.108.051302. 
  14. Borexino collaboration (2012). "Measurement of CNGS muon neutrino speed with Borexino". Physics Letters B 716 (3–5): 401–405. arXiv:1207.6860. Bibcode:2012arXiv1207.6860B. doi:10.1016/j.physletb.2012.08.052. 

External links


Coordinates: 42°28′N 13°34′E / 42.46°N 13.57°E / 42.46; 13.57

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.