Borabenzene
Properties as ligands
Boratabenzenes have a negative charge on their six-membered rings and act as strong π-donating ligands like a cyclopentadienyl anion, which is often used in transition metal complexes. In fact, sandwich or half-sandwich type complexes of many transition metals have been reported using boratabenzenes, and the zirconium sandwich complexes exhibit catalytic activity in ethylene polymerization similar to zirconocenes, which are the cyclopentadienyl counterparts.
Family of boratabenzenes
Several boracyclic compounds are involved in the family of boratabenzenes: 1-boratanaphthalene, 9-borathaanthracene, boracyclooctatetraene, and 2,2’-diboratabiphenyl. Among these compounds, 2,2’-diboratabiphenyl is the first bidentate Lewis acid based on a borabenzene framework, so it is regarded as a Lewis acid analogue of 2,2’-bipyridine, a common bidentate ligand. This compound forms polycyclic aromatic hydrocarbon analogues containing boron and nitrogen atoms, which show characteristic optical and electrochemical properties due to the charge transfer between the boron and nitrogen atoms.
Reactions
Borabenzene is known to react with electron-deficient alkynes in a Diels-Alder reaction to the boron pendants of barrelene called borabarrelenes:[1]
Likewise the benzoborabarrelene is accessible through reaction with benzyne through 2-(Trimethylsilyl)phenyl triflate and caesium fluoride:
The boron atom in these barrelene compounds is pyramidalized (the sum of the C-B-C angles is 311° not 327°) leading to even greater Lewis acid strength. This is evident from the unusual small B-N bond length of 158 picometer compared to 165pm for ordinary B-N bonds in borane-pyridine adducts.
Another remarkable manifestation of this property is their reluctance to surrender the pyridine ligand (for example in exchange for deuterated pyridine d5-Py) even at 200 °C.
In contrast to ordinary barrelenes, this benzobarrelene is also resistant to Ring opening metathesis polymerisation.
See also
- 6-membered aromatic rings with one carbon replaced by another group: borabenzene, benzene, silabenzene, germabenzene, stannabenzene, pyridine, phosphorine, arsabenzene, pyrylium salt
- Borazine
References
- ↑ 1-Borabarrelene Derivatives via Diels-Alder Additions to Borabenzenes Thomas K. Wood, Warren E. Piers, Brian A. Keay, and Masood Parvez Org. Lett.; 2006; 8(13) pp 2875 - 2878; (Letter) doi:10.1021/ol061201w