Boeing 787 Dreamliner

From Wikipedia, the free encyclopedia

The Boeing 787 Dreamliner is a long-range, mid-size wide-body, twin-engine jet airliner developed by Boeing Commercial Airplanes. Its variants seat 210 to 330 passengers. Boeing states that it is the company's most fuel-efficient airliner and the world's first major airliner to use composite materials as the primary material in the construction of its airframe.[1] The 787 has been designed to be 20% more fuel efficient than the 767 it is to replace.[2][3] The Dreamliner's distinguishing features include mostly electrical flight systems, a four-panel windshield, noise-reducing chevrons on its engine nacelles, and a smoother nose contour. It shares a common type rating with the larger 777 twinjet, allowing qualified pilots to operate both models, due to related design features.[4]

The aircraft's initial designation was 7E7, prior to its renaming in January 2005.[5] The first 787 was unveiled in a roll-out ceremony on July 8, 2007, at Boeing's Everett assembly factory, by which time it had 677 on order; this is more orders from launch to roll-out than any previous wide-body airliner.[6] By October 2013, the 787 program had logged 982 orders from 58 customers, with International Lease Finance Corporation (ILFC) having the largest number on order.[7]

Development and production of the 787 have involved a large-scale collaboration with numerous suppliers around the globe. Final assembly is at the Boeing Everett Factory in Everett, Washington. Assembly is also taking place at a new factory in North Charleston, South Carolina. Both sites will deliver 787s to airline customers. Originally planned to enter service in May 2008, the project has suffered from multiple delays. The airliner's maiden flight took place on December 15, 2009, and completed flight testing in mid-2011. Final Federal Aviation Administration (FAA) and European Aviation Safety Agency (EASA) type certification was received in late August 2011 and the first model was delivered in late September 2011. It entered commercial service on October 26, 2011.

The aircraft has suffered from several in-service problems, notably fires on board related to its lithium-ion batteries. These systems were reviewed by both the FAA and the Japanese aviation agency. On January 16, 2013, the FAA issued an emergency airworthiness directive that grounded all 787s in the U.S. The EASA, Japanese Transport Ministry, India's Directorate General of Civil Aviation (DGCA), and Chile's Dirección General de Aeronautica Civil (DGAC) followed suit and grounded the Dreamliners in their jurisdictions.[8][9] After Boeing completed tests on a revised battery design, the FAA approved the revised design on April 19, 2013, and lifted the grounding on April 26, 2013. The 787 returned to passenger service on April 27, 2013, with Ethiopian Airlines.[10]

Development

Background

During the late 1990s, Boeing began studying replacement aircraft programs as sales for the 767 and Boeing 747-400 slowed. The company proposed two new aircraft, the 747X, which would have lengthened the 747-400 and improved efficiency, and the Sonic Cruiser, which would have achieved 15% higher speeds (approximately Mach 0.98) while burning fuel at the same rate as the existing 767.[11] Market interest for the 747X was tepid, but the Sonic Cruiser had brighter prospects. Several major airlines in the United States, including Continental Airlines, initially showed enthusiasm for the Sonic Cruiser concept, although they also expressed concerns about the operating cost.[12]

The global airline market was disrupted by the September 11, 2001 attacks and increased petroleum prices, making airlines more interested in efficiency than speed. The worst-affected airlines, those in the United States, had been considered the most likely customers of the Sonic Cruiser, and thus Boeing officially cancelled the Sonic Cruiser on December 20, 2002. Changing course, the company announced an alternative product using Sonic Cruiser technology in a more conventional configuration, the 7E7, on January 29, 2003.[1][13] The emphasis on a smaller midsize twinjet rather than a large 747-size aircraft represented a shift from hub-and-spoke theory towards the point-to-point theory,[14] in response to analysis of focus groups.[15]

The Dreamliner logo
Dreamliner was announced in July 2003.

The replacement for the Sonic Cruiser project was dubbed the "7E7"[16] (with a development code name of "Y2"). Technology from the Sonic Cruiser and 7E7 was to be used as part of Boeing's project to replace its entire airliner product line, an endeavor called the Yellowstone Project (of which the 7E7 became the first stage).[17] Early concept images of the 7E7 included rakish cockpit windows, a dropped nose and a distinctive "shark-fin" tail.[18] The "E" was said to stand for various things, such as "efficiency" or "environmentally friendly"; however, in the end, Boeing said that it merely stood for "Eight".[1] In July 2003, a public naming competition was held for the 7E7, for which out of 500,000 votes cast online the winning title was Dreamliner.[19] Other names in the pool included eLiner, Global Cruiser and Stratoclimber.[20]

B787 in launch customer All Nippon Airways' blue and white livery. In the background are two assembly halls, with huge doors facing left. Vehicles are parked in front of the halls.
All Nippon Airways launched the 787 Dreamliner program with an order for 50 aircraft in 2004.

On April 26, 2004, Japanese airline All Nippon Airways became the launch customer for the Dreamliner, by announcing a firm order for 50 aircraft with deliveries to begin in late 2008.[21] All Nippon Airways' order was initially specified as 30 787-3, 290–330 seat, one-class domestic aircraft, and 20 787-8, long-haul, 210–250 seat, two-class aircraft for regional international routes such as Tokyo Narita–Beijing. The aircraft would allow All Nippon Airways to open new routes to cities not previously served, such as Denver, Moscow, and New Delhi.[22] The 787-3 and 787-8 were to be the initial variants, with the 787-9 entering service in 2010.[23]

Design phase

The 787 was designed to be the first production airliner with the fuselage assembled with one-piece composite barrel sections instead of the multiple aluminum sheets and some 50,000 fasteners used on existing aircraft.[24][25] Boeing selected two new engine types to power the 787, the General Electric GEnx and Rolls-Royce Trent 1000.[1] Boeing stated the 787 would be approximately 20 percent more fuel-efficient than the 767,[26] with approximately 40 percent of the efficiency gain from the engines,[27] plus gains from aerodynamic improvements,[28] increased use of lighter-weight composite materials, and advanced systems.[23] The 787-8 and −9 were intended to be certified to 330 minute ETOPS capability.[29]

During the design phase, the 787 underwent extensive wind tunnel testing at Boeing's Transonic Wind Tunnel, QinetiQ's five-meter wind tunnel at Farnborough, UK, and NASA Ames Research Center's wind tunnel, as well as at the French aerodynamics research agency, ONERA. The final styling of the aircraft was more conservative than earlier proposals, with the fin, nose, and cockpit windows changed to a more conventional form. By the end of 2004, customer-announced orders and commitments for the 787 reached 237 aircraft.[30] Boeing initially priced the 787-8 variant at US$120 million, a low figure that surprised the industry. In 2007, the list price was US$146–151.5 million for the 787-3, US$157–167 million for the 787-8 and US$189–200 million for the 787-9.[31] The 787 airframe underwent extensive structural testing during this time.[32][33]

Manufacturing and suppliers

After stiff competition, Boeing announced on December 16, 2003, that the 787 would be assembled in its factory in Everett, Washington.[1] Instead of building the complete aircraft from the ground up in the traditional manner, final assembly would employ 800 to 1,200 people to join completed subassemblies and to integrate systems.[34] Boeing assigned its global subcontractors to do more assembly themselves and deliver completed subassemblies to Boeing for final assembly. This approach was intended to result in a leaner and simpler assembly line and lower inventory,[35] with pre-installed systems reducing final assembly time by three-quarters to three days.[36][37]

Assembly of a "Section 41", the nose section of the Boeing 787

Subcontracted assemblies included wing manufacture (Mitsubishi Heavy Industries, Japan, central wing box)[38] horizontal stabilizers (Alenia Aeronautica, Italy; Korea Aerospace Industries, South Korea);[39] fuselage sections (Global Aeronautica, Italy; Boeing, North Charleston, USA; Kawasaki Heavy Industries, Japan; Spirit AeroSystems, Wichita, USA; Korean Air, South Korea);[40][41][42] passenger doors (Latécoère, France); cargo doors, access doors, and crew escape door (Saab AB, Sweden); software development (HCL Enterprise India);[43] floor beams (TAL Manufacturing Solutions Limited, India);[44][45] wiring (Labinal, France);[46] wing-tips, flap support fairings, wheel well bulkhead, and longerons (Korean Air, South Korea);[47] landing gear (Messier-Bugatti-Dowty, UK/France);[48][49] and power distribution and management systems, air conditioning packs (Hamilton Sundstrand, Connecticut, USA).[46][50] Boeing is considering bringing construction of the 787-9 tail in house; the tail of the 787-8 is currently made by Alenia.[51]

To speed up delivery of the 787's major components, Boeing modified four used 747-400s into 747 Dreamlifters to transport 787 wings, fuselage sections, and other smaller parts. Japanese industrial participation was very important to the project, with Japanese companies co-designing and building 35% of the aircraft. This was the first time outside firms were given a key role in the design of Boeing airliner wings. The Japanese government also provided support with an estimated US$2 billion in loans.[52] On April 26, 2006, Japanese manufacturer Toray Industries and Boeing announced a production agreement involving US$6 billion worth of carbon fiber, extending a 2004 contract and aimed at easing production concerns.[1] In May 2007 final assembly on the first 787 began at Boeing's Everett, Washington plant.[53]

The 787 project became less lucrative than expected for some subcontractors. Finmeccanica had a total loss of €750 million on the project by 2013.[54]

Production and delivery delays

While Boeing had been working to trim excess weight since assembly of the first airframe began, the company stated in December 2006 that the first six 787s were overweight, with the first aircraft expected to be 5,000 lb (2,300 kg) heavier than specified. In November 2007, Steven F. Udvar-Házy, CEO of International Lease Finance Corporation (ILFC) stated that the 787-9's operating empty weight was around 14,000 lb (6,400 kg) overweight.[55] The seventh and subsequent aircraft would be the first optimized 787-8s and were expected to meet all goals, with Boeing working on weight reductions.[56][57] As part of this process, Boeing redesigned some parts and made more use of lighter titanium.[58]

The Everett Factory Hall's huge door opens as the first 787 is rolled out. Surrounding the aircraft are guests and the public.
The 787 Dreamliner's first public appearance was webcast live on July 8, 2007.

Boeing's early plans called for first flight by the end of August 2007 and premiered the first 787 at a rollout ceremony on July 8, 2007.[59] The aircraft's major systems had not been installed at that time and many parts were attached with temporary non-aerospace fasteners requiring replacement with flight fasteners later.[60] Although intended to shorten the production process, 787 subcontractors initially had difficulty completing the extra work because they could not procure the needed parts and perform the subassembly on schedule, leaving remaining assembly work for Boeing to complete as "traveled work".[61][62][63]

On September 5, Boeing announced a three-month delay, blaming a shortage of fasteners as well as incomplete software.[64] On October 10, 2007, a second three-month delay to the first flight and a six-month delay to first deliveries was announced due to problems with the foreign and domestic supply chain, including an ongoing fastener shortage, the lack of documentation from overseas suppliers, and continuing delays with the flight guidance software.[65][66][67] Less than a week later, Mike Bair, the 787 program manager was replaced.[68] On January 16, 2008, Boeing announced a third three-month delay to the first flight of the 787, citing insufficient progress on "traveled work".[69] On March 28, 2008, in an effort to gain more control over the supply chain, Boeing announced that it planned to buy Vought Aircraft Industries' interest in Global Aeronautica;[70] the company later agreed to also buy Vought's North Charleston, S.C. factory.[71]

On April 9, 2008, Boeing officially announced a fourth delay, shifting the maiden flight to the fourth quarter of 2008, and delaying initial deliveries by around 15 months to the third quarter of 2009. The 787-9 variant was postponed to 2012 and the 787-3 variant was to follow with no firm delivery date.[72] On November 4, 2008, the company announced a fifth delay due to incorrect fastener installation and the Boeing machinists strike, stating that the first test flight would not occur in the fourth quarter of 2008.[73][74] After assessing the 787 program schedule with its suppliers,[75] Boeing confirmed on December 11, 2008, that the first flight would be delayed until the second quarter of 2009.[76]

Airlines, including United Airlines and Air India, have stated their intentions to seek compensation from Boeing for the delays.[77][78]

Pre-flight ground testing

As Boeing worked with its suppliers on early 787 production, the aircraft design had proceeded through a series of test goals. On August 7, 2007, on-time certification of the Rolls-Royce Trent 1000 engine by European and US regulators was received.[79] On August 23, 2007, a crash test involving a vertical drop of a partial composite fuselage section from about 15 ft (4.6 m) onto a 1 in (25 mm)-thick steel plate occurred in Mesa, Arizona;[80][81] the results matched what Boeing's engineers had predicted, allowing modeling of various crash scenarios using computational analysis instead of further physical tests.[82][83] While critics had expressed concerns that a composite fuselage could shatter and burn with toxic fumes during crash landings, Boeing's test data indicated no greater toxicity versus conventional metal airframes.[84][85] The crash test was the third in a series of demonstrations conducted to match FAA requirements, which included additional certification criteria owing to the 787's introduction of wide-scale use of composite materials.[81] The 787 meets the FAA's requirement that passengers have at least as good a chance of surviving a crash landing as they would with current metal airliners.[86]

The first Boeing 787 underwent taxi tests at Paine Field in November and December 2009.

The alternative GE GEnx-1B engine achieved certification on March 31, 2008.[87] On June 20, 2008, the 787 team achieved "Power On" of the first aircraft, powering and testing the aircraft's electrical supply and distribution systems.[88] A non-flight 787 test airframe was built for static testing, and on September 27, 2008, over a period of nearly two hours, the fuselage was successfully tested at 14.9 psi (102.7 kPa) differential, which is 150 percent of the maximum pressure expected in commercial service (i.e., when flying at maximum cruising altitude).[89] In December 2008, the Federal Aviation Administration (FAA) passed the maintenance program for the 787.[90]

On May 3, 2009, the first test 787 was moved to the flight line following extensive factory-testing, including landing gear swings, systems integration verification, and a total run-through of the first flight.[91] On May 4, 2009, a press report indicated a 10–15% range reduction, about 6,900 nmi (12,800 km) instead of the originally promised 7,700 to 8,200 nmi (14,800–15,700 km), for early aircraft that were about 8% overweight. Substantial redesign work was expected to correct this, which would complicate increases in production rates;[92] Boeing stated the early 787-8s would have a range of almost 8,000 nmi (15,000 km).[93] As a result, some airlines reportedly delayed deliveries of 787s in order to take later planes that may be closer to the original estimates.[94] Boeing expected to have the weight issues addressed by the 21st production model.[95]

On June 15, 2009, during the Paris Air Show, Boeing said that the 787 would make its first flight within two weeks. However, on June 23, 2009, Boeing announced that the first flight is postponed "due to a need to reinforce an area within the side-of-body section of the aircraft".[96][97][98] Boeing provided an updated 787 schedule on August 27, 2009, with the first flight planned to occur by the end of 2009 and deliveries to begin at the end of 2010.[99] The company expected to write off US$2.5 billion because it considered the first three Dreamliners built unsellable and suitable only for flight tests.[100] On October 28, 2009, Boeing announced the selection of Charleston, SC as the site for a second 787 production line, after soliciting bids from multiple states including Washington.[101] On December 12, 2009, the first 787 completed high speed taxi tests, the last major step before flight.[102][103][104]

Flight test program

On December 15, 2009, Boeing conducted the Dreamliner's maiden flight with the first 787-8, originating from Snohomish County Airport in Everett, Washington, at 10:27 am PST,[105] and landing at Boeing Field in King County, Washington, at 1:35 pm PST.[106][107] Originally scheduled for four hours, the test flight was shortened to three hours because of bad weather.[108] Boeing's schedule called for a 9-month flight test campaign (later revised to 8.5 months).[109] The company's previous major aircraft, the 777, took 11 months with nine aircraft, partly to demonstrate 180-min ETOPS, one of its main features.[110]

The first 787 built taking off on its maiden flight

The 787 flight test program was composed of 6 aircraft, ZA001 through ZA006, four with Rolls-Royce Trent 1000 engines and two with GE GEnx-1B64 engines. The second 787, ZA002 in All Nippon Airways livery, flew to Boeing Field on December 22, 2009, to join the flight test program;[111][112] the third 787, ZA004 joined the test fleet with its first flight on February 24, 2010, followed by ZA003 on March 14, 2010.[113] On March 24, 2010, testing for flutter and ground effects was completed, clearing the aircraft to fly its entire flight envelope.[114] On March 28, 2010, the 787 completed the ultimate wing load test, which requires that the wings of a fully assembled aircraft be loaded to 150% of design limit load and held for 3 seconds. The wings were flexed approximately 25 ft (7.6 m) upward during the test.[115] Unlike past aircraft however, the wings were not tested to failure.[116][117] On April 7, Boeing announced that analysis of the data showed the test was a success.[118]

On April 23, 2010, Boeing delivered the newest 787, ZA003, to the McKinley Climatic Laboratory hangar at Eglin Air Force Base, Florida, for extreme weather testing in temperatures ranging from 115 to −45 °F (46 to −43 °C), and prepare it for takeoff at both temperature extremes.[119] Dreamliner ZA005, the fifth 787 and the first with General Electric GEnx engines began ground engine tests in May 2010.[120] ZA005 made its first flight on June 16, 2010 and joined the flight test program.[121] In June 2010, gaps were discovered in the horizontal stabilizers of test aircraft, due to improperly installed shims; all aircraft produced then were to be inspected and repaired.[122] That same month, a 787 experienced an in-flight lightning strike, allowing engineers the opportunity to examine the aircraft's design tolerances.[123] Because composites can have as little as 1/1,000th the electrical conductivity of aluminum, Boeing engineers included conductive material to ameliorate potential risks and to meet FAA requirements.[84][124][125] FAA management was also planning to adjust requirements to help the 787 show compliance.[126] Inspections following the 787's first recorded lightning strike showed no damage to the aircraft.[123]

The first 787 to visit Europe, ZA003 at the 2010 Farnborough Airshow

The 787 made its first appearance at an international air show at the Farnborough Airshow, UK, on July 18, 2010.[127]

On August 2, 2010, a Trent 1000 engine suffered a blowout at Rolls-Royce's test facility during ground testing.[128] The failure caused Boeing to reevaluate its timeline for installing Trent 1000 engines, and on August 27, 2010 the manufacturer confirmed that the first delivery to launch customer All Nippon Airways would be delayed until early 2011.[129][130] That same month, Boeing faced compensation claims from airlines owing to ongoing delivery delays.[131] On September 9, 2010, it was reported that a further two 787s might join the test fleet, making a total of eight flight test aircraft.[132] On September 10, 2010, a partial engine surge or runaway occurred in a Trent engine on ZA001 at Roswell.[133] On October 4, 2010, the sixth 787, ZA006 joined the test program with its first flight.[134]

Front/side view of white 787 on static display. Stairway is positioned ahead of the right engine for access into cabin.
The third 787 built, on static display in 2010

On November 5, 2010, it was reported that some early 787 deliveries may be delayed, in one case some three months, to allow for rework to address problems found during flight testing.[135][136] On November 9, 2010, Boeing 787, ZA002 made an emergency landing after smoke and flames were detected in the main cabin during a test flight over Texas. A Boeing spokesperson said the airliner landed safely and the crew was evacuated after landing at the Laredo International Airport, Texas.[137][138][139] The electrical fire caused some systems to fail before landing.[140] Following this incident, Boeing suspended flight testing on November 10, 2010. Ground testing was performed instead.[141][142]

On November 22, 2010, Boeing announced that the in-flight fire can be primarily attributed to foreign object debris (FOD) that was present in the electrical bay.[143] After electrical system and software changes, the 787 resumed company flight testing on December 23, 2010.[144][145] In January 2011, Boeing announced that the first 787 delivery was rescheduled to the third quarter of 2011 due to software and electrical updates following the in-flight fire.[146][147] On February 24, 2011, Boeing announced that the 787 had completed 80% of the test conditions for Rolls-Royce Trent 1000 engine and 60% of the conditions for the General Electric GEnx-1B engine.[148] On July 4, 2011, All Nippon Airways began a week of airline operations testing using a 787 in Japan.[149]

The 787 test aircraft have flown 4,828 hours in 1,707 flights combined by August 15, 2011.[113] During testing the 787 has visited 14 countries in Asia, Europe, North America, and South America to test in extreme climates and conditions, and to perform route testing.[150] Boeing completed certification testing for Rolls-Royce powered 787-8s on August 13, 2011.[151] The FAA and European Aviation Safety Agency certified the 787 on August 26, 2011, at a ceremony in Everett, Washington.[152][153]

The stretched version 787-9 has flown 141 hours as of November 8, 2013 .

Service entry and early operations

The 787-8 received FAA and EASA certification on August 21, 2011.

Certification of the 787 cleared the way for deliveries.[153] Boeing began preparations to increase 787 production rates from two to ten aircraft per month over the next two years.[153] Production is taking place at assembly lines in Everett and Charleston. The Charleston site's contributions have been clouded by legal difficulties; on April 20, 2011, the National Labor Relations Board alleged that Boeing's second production line in South Carolina violated two sections of the National Labor Relations Act.[101] This labor dispute ended in December 2011 when the National Labor Relations Board dropped its lawsuit after the Machinists union withdrew its complaint as part of a new contract with Boeing.[154] The first 787 assembled at the South Carolina facility was rolled out on April 27, 2012.[155]

The first 787 was officially delivered to All Nippon Airways on September 25, 2011, at Boeing's facilities in Everett, Washington. A ceremony to mark the occasion was also held the next day.[156][157] On September 27, the Dreamliner flew to Haneda Airport.[158][159] The airline took delivery of the second 787 on October 13, 2011.[160]

An Ethiopian Airlines 787-8 at Frankfurt Airport

On October 26, 2011, the 787 flew its first commercial flight from Narita to Hong Kong on All Nippon Airways.[161] The airliner was planned to enter service some three years prior. Tickets for the flight were sold in an online auction, with the highest bidder paying $34,000 for a seat.[162] The 787 flew its first commercial long-haul flight on January 21, 2012 from Haneda to Frankfurt on All Nippon Airways.[163]

The second and third United Airlines 787-8s at Los Angeles International Airport

On December 6, 2011, test aircraft ZA006 (sixth 787 built), powered by General Electric GEnx engines, flew 10,710 nautical miles (19,830 km) non-stop from Boeing Field eastward to Shahjalal International Airport in Dhaka, Bangladesh, setting a new world distance record for aircraft in the 787's weight class, which is between 440,000 pounds (200,000 kg) and 550,000 pounds (250,000 kg). This flight surpassed the previous record of 9,127 nautical miles (16,903 km), set in 2002 by an Airbus A330. The Dreamliner then continued eastbound from Dhaka to return to Boeing Field, setting a world-circling speed record of 42 hours, 27 minutes.[164] In April 2012, an All Nippon Airways 787 made a delivery flight from Boeing in Seattle to Tokyo's Haneda Airport partially using biofuel from cooking oil.[165]

In late 2011, Boeing began a 787 world tour to promote the airliner. It has visited cities in China, Africa, the Middle East, Europe, United States, and others.[166][167][168]

According to launch customer ANA data, the 787 surpassed the promised 20% fuel burn reduction, as compared to the Boeing 767. On the Tokyo-Frankfurt route the fuel saving was 21%.[3] As part of this report, ANA surveyed 800 passengers who flew the 787 from Tokyo to Frankfurt: expectations were surpassed for 90% of passengers, and other features that met or exceeded expectations included air quality and cabin pressure (90% of passengers), cabin ambiance (92% of passengers), higher cabin humidity levels (80% of passengers), headroom (40% of passengers) and the larger than usual windows (90% of passengers). 25% said they would go out of their way to again fly on the 787.[169]

Qatar Airways placed its first 787 on display at the Farnborough Airshow in July 2012; the aircraft was to be officially delivered the following month.[170]

On September 15, 2012, the NTSB requested the grounding of certain 787s due to GE engine failures; GE believed the production problem had been fixed by that time.[171]

Design

A near-planform view of a Boeing 787-8 (ZA005) taking off from Boeing Field.

The 787's design features light-weight construction. The aircraft is 80% composite by volume.[172] Although design changes increased the titanium share, Boeing actually lists its materials by weight as 50% composite, 20% aluminum, 15% titanium, 10% steel, and 5% other.[173][174][175] Aluminum is used for the wing and tail leading edges; titanium is used mainly on engines and fasteners, with steel used in various areas.[174]

External features include raked wingtips and engine nacelles with noise-reducing serrated edges (chevrons).[176] The longest-range 787 variant can fly 8,000 to 8,500 nautical miles (14,800 to 15,700 km), enough to cover the Los Angeles to Bangkok or New York City to Hong Kong routes. Cruising airspeed is Mach 0.85[177] (561 mph (903 km/h) at typical cruise altitudes).

Flight systems

Among 787 flight systems, a key change from traditional airliners is the electrical architecture. The architecture is bleedless and replaces bleed air and hydraulic power sources with electrically powered compressors and pumps, while completely eliminating pneumatics and hydraulics from some subsystems (e.g., engine starters or brakes).[178] Boeing says this system extracts 35% less power from the engines, allowing increased thrust and improved fuel economy.[179] The total available on-board electrical power is 1.45 megawatts, which is five times the power available on conventional pneumatic airliners;[180] the most notable electrically powered systems include: engine start, pressurization, horizontal stabilizer trim, and wheel brakes.[181] Wing ice protection is another new system; it uses electro-thermal heater mats on the wing slats instead of traditional hot bleed air.[182][183] An active gust alleviation system, similar to the system used on the B-2 bomber, improves ride quality during turbulence.[184][185]

Boeing 787 flight deck

The 787 has a "fly by wire" control system whose architecture is similar to that of the Boeing 777.[186] The 787 flight deck features LCD multi-function displays, all of which use an industry standard GUI widget toolkit (Cockpit Display System Interfaces to User Systems / ARINC 661).[187] The 787 flight deck includes two head-up displays (HUDs) as a standard feature.[188] Like other Boeing airliners, the 787 uses a yoke instead of a side-stick. Under consideration is future integration of forward looking infrared into the HUD system for thermal sensing. This allows pilots to "see" through the clouds.[1] The Lockheed Martin Orion spacecraft will use a glass cockpit derived from Honeywell International's 787 flight deck systems.[189]

On the 787, Honeywell and Rockwell Collins provided flight control, guidance, and other avionics systems, including standard dual head up guidance systems,[1] Thales supplies the integrated standby flight display and power management,[1] while Meggitt/Securaplane provides the APU starting system, electrical power conversion system, and battery control system[190][191] with lithium cobalt oxide (LiCo) batteries by GS Yuasa.[192][193][194][195] One of the two batteries weighs 28.5 kg and is rated 29.6 V, 76 Ah, giving 2.2 kWh.[196] Battery charging is controlled by four independent systems to prevent overcharging following early lab testing.[197] The battery systems are the focus of regulatory investigation due to multiple lithium battery fires, which led to grounding of the 787 fleet starting in January 2013.[198]

A version of Ethernet (Avionics Full-Duplex Switched Ethernet (AFDX) / ARINC 664) will be used to transmit data between the flight deck and aircraft systems.[199] The airplane's control, navigation, and communication systems are networked with the passenger cabin's in-flight internet systems.[200] In January 2008, FAA concerns were reported regarding possible intentional or unintentional passenger access to the 787's computer networks. In response, Boeing stated various airplane protective hardware and software solutions are employed, including air gaps in places to physically separate the networks, and firewalls for software separation.[200][201] These measures prevent data transfer from the passenger internet system to the maintenance or navigation systems.[200]

Composite materials

Disassembled composite fuselage section of the Boeing 787

Each 787 contains approximately 35 short tons (32,000 kg) of carbon-fiber-reinforced polymer (CFRP), made with 23 tons of carbon fiber.[202] Carbon fiber composites have a higher strength-to-weight ratio than traditional aircraft materials, and help make the 787 a lighter aircraft.[174] Composites are used on fuselage, wings, tail, doors, and interior. Boeing had built and tested the first commercial aircraft composite section while studying the proposed Sonic Cruiser nearly five years before;[203][204] the Bell Boeing V-22 Osprey military transport uses 50% composites,[205] and the company's C-17 transport has over 16,000 lb (7,300 kg) of structural composites.[206]

Carbon fiber, unlike metal, does not visibly show cracks and fatigue, prompting concerns about the safety risks of widespread use of the material;[84][207][208] the rival Airbus A350 was later announced as using composite panels on a frame, a more traditional approach, which its contractors regarded as less risky.[85] Although later fired, in 2006, Boeing engineer Vince Weldon complained to management, then later in public: the composite fuselage was unsafe compared to traditional aluminum designs, and in a crash, was more likely to "shatter too easily and burn with toxic fumes".[209]

In addition, a potential issue is the porous nature of composite materials: collected moisture expanding with altitude can cause delamination.[210] Boeing responded by noting: composites have been used on wings and other passenger aircraft parts for many years without incident, and special defect detection procedures will be instituted for the 787 to detect any potential hidden damage.[211]

In 2006, Boeing launched the 787 GoldCare program.[212] This is an optional, comprehensive life-cycle management service, whereby aircraft in the program are routinely monitored and repaired, as needed. Although the first program of its kind from Boeing, post-sale protection programs are not new; such programs are usually offered by third party service centers. Boeing is also designing and testing composite hardware so inspections are mainly visual. This reduces the need for ultrasonic and other non-visual inspection methods, saving time and money.[213]

Engines

The toothed exhaust duct covers on the first 787, shown here with thrust-reversers deployed

The 787 features two engines; these engines use all-electrical bleedless systems, eliminating the superheated air conduits normally used for aircraft power, de-icing, and other functions.[1] As part of its "Quiet Technology Demonstrator 2" project, Boeing adopted several engine noise-reducing technologies for the 787. Among these are a redesigned air inlet containing sound-absorbing materials and redesigned exhaust duct covers whose rims are tipped in a toothed pattern called chevrons to allow for quieter mixing of exhaust and outside air.[176] Boeing expects these developments to make the 787 significantly quieter both inside and out.[214] The noise-reducing measures ensure that sounds above 85 decibels do not leave airport boundaries.[174]

The two different engine models compatible with the 787 use a standard electrical interface to allow an aircraft to be fitted with either Rolls-Royce Trent 1000 or General Electric GEnx engines. This aims to save time and cost when changing engine types; while previous aircraft can have engines changed to those of a different manufacturer, the high cost and time required makes it rare.[215][216] In 2006, Boeing addressed reports of an extended change period by stating that the 787 engine swap was intended to take 24 hours;[216] engine interchangeability, it is reported, makes the 787 a more flexible asset to airlines, allowing them to change easily from one manufacturer's engine to the other if required.[1]

Interior

ANA's first 787 Dreamliner with 2–4–2 economy class seating

The 787-8 is designed to typically seat 234 passengers in a three-class setup, 240 in two-class domestic configuration, and 296 passengers in a high-density economy arrangement. Seat rows can be arranged in four to seven abreast in first or business (e.g., 1–2–1, 2–2–2, 2-3-2). Eight or nine abreast are options in economy (e.g., 3–2–3, 2–4–2, 3–3–3). Typical seat room ranges from 46 to 61 in (120 to 150 cm) pitch in first, 36 to 39 in (91 to 99 cm) in business, and 32 to 34 in (81 to 86 cm) in economy.[217][218]

Cabin interior width is approximately 18 feet (550 cm) at armrest level,[217] which is 1 inch (2.5 cm) more than originally planned.[219] The Dreamliner's cabin width is 15 inches (38 cm) more than that of the Airbus A330 and A340,[220] 5 inches (13 cm) less than the A350,[221] and 16 in (41 cm) less than the 777.[222] Airlines use economy seat widths from a low of 16.33 in (41.5 cm) in charter configuration up to 20.66 in (52.5 cm) in premium economy layout.[223] The 787's economy seats are approximately 17.2 in (43.7 cm) wide for nine-abreast seating and 19 inches (48 cm) wide for eight-abreast seating arrangements. Most airlines are selecting the nine-abreast (3–3–3) configuration.[224] Boeing engineers designed the 787 interior to better accommodate persons with mobility, sensory, and cognitive disabilities. For example, a 56 in (140 cm) by 57 in (140 cm) convertible lavatory includes a movable center wall that allows two separate lavatories to become one large, wheelchair-accessible facility.[225]

787 cabin. It shows the 787's spacious cabin. Above the blue seats are overhead bins and a rainbow light effect.
The 787's larger windows are designed to improve passenger views.

The 787's cabin windows are larger in area than any other civil air transport in-service or in development,[226] with dimensions of 10.7 by 18.4 in (27 by 47 cm),[226] and a higher eye level so passengers can maintain a view of the horizon.[227] The composite fuselage permits larger windows without the need for structural reinforcement.[228] Instead of window shades, the windows use electrochromism-based smart glass (supplied by PPG Industries)[229] allowing flight attendants[230] and passengers to adjust five levels of sunlight and visibility to their liking,[231] reducing cabin glare while maintaining a view to the outside world,[227][232] but the most opaque setting still has some transparency.[230][233][234] However, the lavatory still has a traditional sunshade.[231] The 787's cabin features light-emitting diodes (LEDs)[235] as standard equipment, allowing the aircraft to be entirely 'bulbless'. LED lights have previously been an option on Airbus aircraft and the Boeing 777.[236][237] The system is based on three color plus white LEDs instead of fluorescent tubes,[235] allowing any color and brightness.

The internal cabin pressure of the 787 is increased to the equivalent of 6,000 feet (1,800 m) altitude instead of the 8,000 feet (2,400 m) on older conventional aircraft.[238] According to Boeing, in a joint study with Oklahoma State University, this will significantly improve passenger comfort.[184][239] Cabin air pressurization is provided by electrically driven compressors, rather than traditional engine-bleed air, thereby eliminating the need to cool heated air before it enters the cabin.[240][241] The cabin's humidity is programmable based on the number of passengers carried, and allows 15% humidity settings instead of the 4% found in previous aircraft.[238] The composite fuselage avoids the metal fatigue associated with higher cabin pressure, and eliminates the risk of corrosion from higher humidity levels.[238] The cabin air-conditioning system improves air quality by removing ozone from outside air, and besides standard HEPA filters which remove airborne particles, uses a gaseous filtration system to remove odors, irritants, and gaseous contaminants as well as particulates like viruses, bacteria and allergens.[174][232]

Variants

Diagrams of outlines of three different aircraft imposed over one another.
Size comparison of the Boeing 787-8 (black outline) with the Boeing 777-300 (gray), 767-300 (teal), and 737-800 (blue).

Boeing has offered four passenger variants of the 787 from the program launch in 2004; three are targeted for production. The 787-8 is the first variant produced, and is to be followed by the 787-9 in 2014, and the 787-10 at a later date. A short-range model, the 787-3, was originally offered for sale but development was cancelled due to production issues with the 787-8. The International Civil Aviation Organization (ICAO) aircraft type designator system classifies the 787-8 and 787-9 under the codes "B788" and "B789", respectively.[242]

787-3

An artist's impression of the 787-3, which would have featured a shorter wing with winglets.

The -3 was targeted for high-density flights; it was designed as a 290-seat (two-class) short-range version with a fully loaded range of 2,500 to 3,050 nautical miles (4,650 to 5,650 km). Using the same basic fuselage as the 787-8, the wing was derived from the 787-8, with blended winglets replacing raked wingtips. The change decreased the wingspan by roughly 25 feet (7.6 m), allowing the 787-3 to fit more domestic gates, and particularly within Japan. This model would have been limited in range by a reduced MTOW of 364,000 lb (165,000 kg).[243][N 1]

The ‐3 variant was designed to operate on Boeing 757-300/767-200-sized regional routes from airports with restricted gate spacing.[244] Boeing projected the future of aviation as between very large, but close cities, of five million or more people; city populations may stabilize around the capacity level of the 787-3.[245][246]

Two Japanese airlines ordered 45 -3s; however, production problems on the base 787-8 model led Boeing, in April 2008, to postpone the introduction of the 787-3 until after the 787-9's introduction, but without a firm delivery date.[72] By January 2010, all 787-3 orders had been converted to the 787-8.[247] The -3 experienced a lack of interest by potential customers because it was designed specifically for the Japanese market.[248] Boeing canceled the 787-3 in December 2010 as it was no longer financially viable.[249]

787-8

Thomson Airways 787-8 at Hannover Airport in June 2013

The 787-8 is the base model of the 787 family, with a length of 186 feet (57 m) and a wingspan of 197 feet (60 m) and a range of 7,650 to 8,200 nautical miles (14,170 to 15,190 km), depending on seating configuration. It is the only 787 variant, and the third Boeing widebody (after the 747SP and the 777-200LR) with a wingspan wider than the length of the fuselage. The 787-8 seats 210 passengers in a three-class configuration.[250] The variant was the first of the 787 line to enter service, entering service in 2011. Boeing is targeting the 787-8 to replace the 767-200ER and 767-300ER, as well as expand into new non-stop markets where larger planes would not be economically viable. Two-thirds of 787 orders are for the 787-8.[7]

787-9

Boeing 787-9 known as ZB001

The 787-9 will be the first variant of the 787 with a "stretched" or lengthened fuselage that is 206 feet (63 m) long. It is to seat 250–290 passengers in three classes with a range of 8,000 to 8,500 nautical miles (14,800 to 15,750 km).[251] This variant differs from the 787-8 in several ways, including structural strengthening, a lengthened fuselage, a higher fuel capacity, a higher maximum take-off weight (MTOW), but with the same wingspan as the 787-8.[252] The targeted entry into service (EIS) date, was originally planned for 2010,[253] but by October 2011 deliveries were scheduled to begin in early 2014.[254] Boeing is targeting the 787-9 to compete with both passenger variants of the Airbus A330 and to replace its 767-400ER. Like the 787-8, it will also open up new non-stop routes. The firm configuration was finalized on July 1, 2010.[255]

When launched, the 787-9 had the same fuel capacity as the 787-8. The design differences meant higher weight and resulted in a slightly shorter range than the 787-8. After further consultation with airlines, design changes were incorporated to add a forward tank to increase its fuel capacity, so it has a longer range and a higher maximum takeoff weight than the 787-8.[251] The prototype 787-9 made its maiden flight from Paine Field on September 17, 2013.[256] Air New Zealand is the launch customer for the 787-9,[257] and plans to take delivery of its first aircraft in July 2014. Its first scheduled commercial flight is to be from Auckland to Perth on October 15, 2014.[258][259]

787-10

Artist's impression of the 787-10, the largest Dreamliner variant, which was formally launched in 2013

The 787-10 is to be 224 ft 1 in (68.3 m) long and have a range up to 7,000 nmi.[260] Its range covers more than 90% of the world's twin-aisle passengers routes including Europe to US West Coast and trans-Pacific flights.[261] The variant is to seat up to 330-passengers in a typical 3-class configuration.[260][262] The 787-10 was envisioned as replacing current 777-200, Airbus A330 and A340 aircraft.[263] Boeing was having discussions with potential customers about the 787-10 in 2006 and 2007.[264][265][266] In March 2006, Mike Bair, the head of the 787 program at the time, stated that "It's not a matter of if, but when we are going to do it... The 787-10 will be a stretched version of the 787-9 and sacrifice some range to add extra seat and cargo capacity."[267]

On May 30, 2013, Singapore Airlines stated it would order 30 of the 787-10, provided Boeing launches the program. The airline is to be the -10 launch customer and is to receive the aircraft in 2018–2019.[268][269][270] On June 18, 2013, Boeing officially launched the 787-10 at the Paris Air Show, with orders or commitments for 102 aircraft from ALC (30), Singapore Airlines (30), United Airlines (20), International Airlines Group/British Airways (12), and GECAS (10).[260][271] The -10 is to compete against Airbus A350, and offer better economics than the A350 on shorter routes, according to Boeing.[272]

Further proposals

Although with no set date, Boeing expects to build, possibly in 10 to 15 years, a 787 freighter version.[273] Boeing is reportedly also considering a 787 variant as a candidate to replace the 747-based VC-25 as Air Force One.[274]

Operators

Boeing 787 Dreamliner across the world. The countries in bold host operators that operate at least one airplane of the type.

Orders and deliveries

A 787 of LOT Polish Airlines, the first European operator[1]

In September 2011, the 787 was first officially delivered to launch customer All Nippon Airways.[292] As of December 2013, the top three customers for the 787 are: ILFC (International Lease Finance Corporation), with orders totaling 74 Boeing 787s (33 -8s and 41 -9s); Etihad Airways with 71 orders (41 -9s and 30 -10s) and All Nippon Airways with 66 orders (36 -8s and 30 -9s).[7]

Boeing 787 orders and deliveries by type
Total ordersTotal deliveries
787-8495118
787-9404
787-10132
Total1031118
Boeing 787 orders and deliveries by year
20042005200620072008200920102011201220132014Total
Orders5623515736993-59-413-1218211031
Deliveries346654118

Boeing 787 orders and deliveries (cumulative, by year):

Orders and deliveries up to January 31, 2014[293][7][294][295][296]

Incidents

Japan Airlines 787 Dreamliner at Boston Logan Airport with lithium-ion battery fire and resulting heavy smoke coming out a cargo hold
Three 787s of All Nippon Airways sit grounded at Tokyo Haneda International Airport in late January 2013.

The Boeing 787 has been involved in multiple aviation incidents and operational problems. In December 2012, Boeing CEO James McNerney stated that the problems were no greater than those experienced with the introduction of other models such as the Boeing 777.[297][298]

Operational problems

A JAL 787 experienced a fuel leak on January 8, 2013, and its flight from Boston was canceled.[299] On January 9, United Airlines reported a problem in one of its six 787s with the wiring near the main batteries. After these incidents, the U.S. National Transportation Safety Board subsequently opened a safety probe.[300] Later, on January 11, 2013, another aircraft was found to have a fuel leak.[301]

Also on January 11, 2013, the FAA announced a comprehensive review of the 787's critical systems, including the design, manufacture and assembly; U.S. Department of Transportation secretary Ray LaHood stated the administration was "looking for the root causes" behind the recent issues. The head of the FAA, Michael Huerta, said that so far nothing found "suggests [the 787] is not safe".[302]

On January 13, 2013, a Japan Airlines 787 at Narita International Airport outside Tokyo, was found to also have a fuel leak during an inspection, the third time a fuel leak had been reported within a week. The aircraft reportedly was the same one that had a fuel leak in Boston on January 8.[303] This leak was caused by a different valve; the causes of the leaks are unknown.[304] Japan's transport ministry has also launched an investigation.[305]

On July 12, 2013, a fire started on an empty Ethiopian Airlines 787 parked at Heathrow Airport before it was put out by the airport fire and rescue service. No injuries were reported.[306][307] The fire caused extensive heat damage to the aircraft.[308] The FAA and NTSB sent representatives to assist in the investigation.[309] The initial investigation found no direct link with the aircraft's main batteries.[310] Further investigations indicated that the fire was due to lithium-manganese dioxide batteries powering an emergency locator transmitter (ELT).[311][312] The UK Air Accidents Investigation Branch (AAIB) issued a special bulletin on July 18, 2013 requesting the US FAA ensure that the locator is removed or disconnected in Boeing 787s, and to review the safety of lithium battery-powered ELT systems in other aircraft types.[313]

On July 26, 2013, ANA said it had found wiring damage on two 787 locator beacons. United Airlines also reported that it had found a pinched wire in one 787 locator beacon.[314] On August 14, 2013, the media reported a fire extinguisher fault affecting three ANA airplanes,[315] which was caused by a supplier assembly error.[316]

On September 25, 2013, the Wall Street Journal reported that all of the five Dreamliners owned by LOT had been grounded for inspection for missing low pressure fuel filters. One 787 was found with none in both engines and another was missing a filter in one engine.[317] On September 28, 2013, a LOT 787 had to divert to Reykjavik due to a faulty self-identification system.[318]

On September 28, 2013, Norwegian Long Haul decided to take one of its two 787s in its fleet at the time out of service after the two aircraft broke down on more than six occasions in September.[319] The company will lease an Airbus A340 for its long-haul operations while the 787 is returned to Boeing for repair.[320] On December 20–22, 2013, Norwegian Long Haul experienced technical problems keeping two of its three 787 aircraft grounded at Fort Lauderdale airport and delayed six flights.[321][322]

On October 15, 2013, an Air India flight from New Delhi to Bangalore lost an 8 ft by 4 ft fairing panel from its underside before landing safely.[323] On November 4, 2013, an Air India flight from Sydney to Melbourne experienced a cracked window shortly before safely landing at Melbourne.[324]

On November 22, 2013, Boeing issued an advisory to airlines using General Electric GEnx engines on 787 and 747-8 aircraft to avoid flying near high-level thunderstorms due to an increased risk of icing on the engines. The problem was caused by a build up of ice crystals just behind the main fan, causing a brief loss of thrust on six occasions.[325]

On January 21, 2014, a Norwegian Air Shuttle 787 experienced a fuel leak which caused a 19-hour delay to a flight from Bangkok to Oslo.[326] Footage of the leak taken by passengers show fuel gushing out of the left wing of the aircraft.[327] The leak became known to pilots only after it was pointed out by concerned passengers.[328] It was found later that a faulty valve was responsible.[329] This fuel leak is one of numerous problems experienced by Norwegian Air Shuttle's 787 fleet.[330] Mike Fleming, Boeing's vice president for 787 support and services, subsequently met with executives of Norwegian Air Shuttle and expressed Boeing's commitment to improving the 787's dispatch reliability, "we’re not satisfied with where the airplane is today, flying at a fleet average of 98 percent... The 777 today flies at 99.4 percent ... and that's the benchmark that the 787 needs to attain”.[331][332] Dispatch reliability is an industry standard measure of the rate of departure from the gate with no more than 15 minutes delay due to technical issues.[333][334]

Battery problems

The Aft Electronics Bay that held the JAL 787 battery that caught fire
Japan Airlines 787 battery comparison; Left: typical original battery. Right: damaged battery.

On January 16, 2013, All Nippon Airways Flight NH-692, en route from Ube to Tokyo Haneda, had a battery problem warning followed by a burning smell while climbing from Ube about 35 nautical miles west of Takamatsu, Japan. The aircraft diverted to Takamatsu and was evacuated via the slides; three passengers received minor injuries during the evacuation. Inspection revealed a battery fire. A similar incident in a parked Japan Airlines 787 at Boston's Logan International Airport within the same week led the Federal Aviation Administration to ground all Boeing 787s in service at the time.[335]

On January 16, 2013, both major Japanese airlines ANA and JAL announced that they were voluntarily grounding or suspending flights for their fleets of 787s after multiple incidents involving different 787s, including emergency landings. These two carriers operate 24 of the 50 Dreamliners delivered to date.[336][337] The grounding is reported to have cost ANA some 9 billion yen (US$93 million) in lost sales.[338][339]

On January 16, 2013, the FAA issued an emergency airworthiness directive ordering all U.S.-based airlines to ground their Boeing 787s until yet-to-be-determined modifications were made to the electrical system to reduce the risk of the battery overheating or catching fire.[340] This was the first time that the FAA has grounded an airliner type since 1979.[341] Industry experts disagreed on consequences of the grounding: Airbus was confident that Boeing would resolve the issue[342] and that no airlines will switch plane type,[343] while other experts saw the problem as "costly"[344] and "could take upwards of a year".[345]

The FAA also announced plans to conduct an extensive review of the 787's critical systems. The focus of the review will be on the safety of the lithium-ion batteries[341] made of lithium cobalt oxide (LiCo). The 787 battery contract was signed in 2005,[194] when LiCo batteries were the only type of lithium aerospace battery available, but since then newer and safer[346] types (such as LiFePO), which provide less reaction energy during thermal runaway, have become available.[192][347] FAA approved a 787 battery in 2007 with nine "special conditions".[348][349] A battery approved by FAA (through Mobile Power Solutions) was made by Rose Electronics using Kokam cells;[350] the batteries installed in the 787 are made by Yuasa.[190]

On January 20, the NTSB declared that overvoltage was not the cause of the Boston incident, as voltage did not exceed the battery limit of 32 V,[351] and the charging unit passed tests. The battery had signs of short circuiting and thermal runaway.[352] Despite this, the NTSB announced on January 24 that it had not yet pinpointed the cause of the Boston fire; the FAA will not allow U.S.-based Dreamliners to fly again until the problem is found and corrected. In a press briefing that day, NTSB Chairwoman Deborah Hersman said that the NTSB had found evidence of failure of multiple safety systems designed to prevent these battery problems, and stated that fire must never happen on an airplane.[353]

The Japan Transport Safety Board (JTSB) has said on January 23 that the battery in ANA jets in Japan reached a maximum voltage of 31 V (below the 32 V limit like the Boston JAL 787), but had a sudden unexplained voltage drop[354] to near zero.[355] All cells had signs of thermal damage before thermal runaway.[356] ANA and JAL had replaced several 787 batteries before the mishaps.[355] As of January 29, 2013, JTSB approved the Yuasa factory quality control[357][358] while the NTSB continues to look for defects in the Boston battery.[359] The two major battery thermal runaway events in 100,000 flight hours was much higher than the rate of one in 10 million flight hours that Boeing predicted.[335]

The only U.S.-based airline that operated the Dreamliner at the time was United Airlines, which had six.[360] Chile's Directorate General of Civil Aviation (DGAC) grounded LAN Airlines' three 787s.[361] The Indian Directorate General of Civil Aviation (DGCA) directed Air India to ground its six Dreamliners. The Japanese Transport Ministry made the ANA and JAL groundings official and indefinite following the FAA announcement.[9] The European Aviation Safety Agency has also followed the FAA's advice and grounded the only two European 787s operated by LOT Polish Airlines.[362] Qatar Airways has announced that they are grounding their five Dreamliners.[363] Ethiopian Air was the final operator to announce temporary groundings of its four Dreamliners.[364] By January 17, 2013, all 50 of the aircraft delivered to date had been grounded.[364][365][366]

On January 18, Boeing announced that it was halting 787 deliveries until the battery problem is resolved.[367] On February 7, 2013, the FAA gave approval for Boeing to conduct 787 test flights to gather additional data.[368][369] In February 2013, FAA oversight into the 2007 safety approval and certification of the 787 have come under scrutiny.[370]

On March 7, 2013, the National Transportation Safety Board released an interim factual report about the 787 battery fire at Boston's Logan Airport on January 7, 2013. The investigation[371] stated that "heavy smoke and fire coming from the front of the APU battery case". Firefighters "tried fire extinguishing, but smoke and flame (flame size about 3 inches) did not stop".[372][373]

Boeing completed its final tests on a revised battery design on April 5, 2013. Qatar Airways said it expected to have its Dreamliners back in revenue service by the end of April.[374] The FAA approved Boeing's revised battery design with three additional, overlapping protection methods on April 19, 2013. The FAA published a directive on April 25 to provide instructions for retrofitting battery hardware before the 787s can return to flight.[375][376] The repairs are expected to be completed in weeks.[377]

Following the FAA approval in the United States,[378] Japan gave permission for passenger airlines to resume Boeing 787 flights in the country effective April 26, 2013.[379] On April 27, 2013, Ethiopian Airlines took a 787 on the model's first commercial flight after battery system modifications.[376][378][380]

On January 14, 2014, a battery in a Japanese Airlines 787 emitted smoke from the battery's protection exhaust while the aircraft was undergoing pre-flight maintenance.[381][382] The battery partially melted in the incident;[383] one of its eight lithium-ion cells had its relief port vent and fluid sprayed inside the battery's container.[384]

Specifications

Schematic of the Boeing 787-8: side, top, front, cross-section views
External images
Boeing 787 cutaway
Boeing 787-8 cutaway from Flight International
Model 787-8 787-9 787-10
Cockpit crew Two
Seating, typical 242 (3-class)
296 (2-class)
381 (maximum)
280 (3-class) 323 (3-class)
Length 186 ft (56.7 m) 206 ft (62.8 m) 224 ft (68.3 m)
Wingspan 197 ft 3 in (60.1 m)
Wing area 3,501 sq ft (325 m2)
Wing sweepback 32.2 degrees
Height 55 ft 6 in (16.9 m)
Fuselage dimensions Width: 18 ft 11 in (5.77 m) / Height: 19 ft 7 in (5.97 m)
Maximum cabin width 18 ft (5.49 m)
Cargo capacity 4,826 cu ft (137 m3)
28× LD3
or 9x (88x125) pallets
or 8x (96x125) pallets + 2x LD3
6,086 cu ft (172 m3)
36× LD3
or 11x (88x125) pallets
or 11x (96x125) pallets
6,187 cu ft (175 m3)
40× LD3
or 13x (88x125) pallets
or 13x (96x125) pallets
Maximum takeoff weight 502,500 lb (228,000 kg) 553,000 lb (251,000 kg)
Maximum landing weight 380,000 lb (172,000 kg) 425,000 lb (193,000 kg) 445,000 lb (202,000 kg)
Maximum zero-fuel weight 355,000 lb (161,000 kg) 400,000 lb (181,000 kg) 425,000 lb (193,000 kg)
Operating empty weight 259,500 lb (118,000 kg) N/A N/A
Cruising speed Mach 0.85 (567 mph, 490 knots, 913 km/h at 35,000 ft/10,700 m)[385]
Maximum speed Mach 0.90 (593 mph, 515 knots, 954 km/h at 35,000 ft/10,700 m)
Range, fully loaded 7,650–8,200 nmi (14,200–15,200 km; 8,800–9,440 mi) 8,000–8,500 nmi (14,800–15,700 km; 9,210–9,780 mi) 7,000 nmi (13,000 km; 8,060 mi)
Takeoff distance at MTOW
(sea level, ISA)
10,300 ft (3,100 m)
High Thrust Rating: 8,500 ft (2,600 m)[386]
N/A N/A
Maximum fuel capacity 33,340 US gal (126,210 L) 36,641 US gal (138,700 L)
Service ceiling 43,000 ft (13,100 m)
Engines (×2) General Electric GEnx-1B or Rolls-Royce Trent 1000
Thrust (×2) 64,000 lbf (280 kN) 71,000 lbf (320 kN) 76,000 lbf (340 kN)

Sources: Boeing 787 airport documents,[252][387] 787 fact sheets,[250][251] 787-10[388][389]

See also

Related development
Aircraft of comparable role, configuration and era
Related lists

Footnotes

  1. Actual range is based on remaining available weight for fuel after the aircraft empty weight and payload are subtracted from the MTOW.

References

Citations

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 Norris, G; Thomas, G; Wagner, M; Forbes Smith, C (2005). Boeing 787 Dreamliner – Flying Redefined. Aerospace Technical Publications International. ISBN 0-9752341-2-9. 
  2. Croft, Jon (October 17, 2011). "Powering the Dream: Atypical paths to Boeing 787 EIS". Flight International. Retrieved January 20, 2013. 
  3. 3.0 3.1 Schofield, Adrian (June 12, 2012). "ANA Says 787s Exceeding Fuel Efficiency Target". Aviation Week (subscription article). Retrieved June 13, 2012. 
  4. "Flight Standardization Board Report". Federal Aviation Administration. August 25, 2011. Retrieved November 8, 2011. 
  5. "Boeing Gives the 7E7 Dreamliner a Model Designation" (Press release). Boeing. January 28, 2005. Retrieved June 14, 2011. 
  6. "Boeing Celebrates the Premiere of the 787 Dreamliner" (Press release). Boeing. July 8, 2007. Retrieved January 21, 2011. 
  7. 7.0 7.1 7.2 7.3 "Boeing 787: Orders and Deliveries (updated monthly)". The Boeing Company. January 2014. Retrieved February 6, 2014. 
  8. "Boeing 787 'Dreamliner' jets grounded in Japan, US". South China Morning Post. 
  9. 9.0 9.1 "DGCA directs Air India to ground all six Boeing Dreamliners on safety concerns". The Economic Times. January 17, 2013. Retrieved January 17, 2013. 
  10. "Ethiopian Airlines Dreamliner flown to Kenya; first 787 flight since grounding In January". Fox News. Associated Press. Retrieved 2013-05-05. 
  11. Gunter, Lori (July 2002). "The Need for Speed, Boeing's Sonic Cruiser team focuses on the future". Boeing Frontier magazine. Retrieved January 21, 2011. 
  12. Banks, Howard (May 28, 2001). "Paper plane: That Mach 0.95 Sonic Cruiser from Boeing will never fly. Here's why.". Forbes. Retrieved June 7, 2007. 
  13. "History of the Boeing 787". Seattle Times. Associated Press. June 23, 2000. Retrieved October 28, 2012. 
  14. Cannegieter, Roger. "Long Range vs. Ultra High Capacity". Aerlines.nl. Retrieved April 8, 2010. 
  15. Babej, Marc E.; Pollak, Tim (May 24, 2006). "Boeing Versus Airbus". Forbes. Retrieved April 8, 2010. 
  16. "Maximizing the Middle, Finding the sweet spot in the market" (Press release). Boeing Frontier magazine. March 2003. 
  17. "Boeing Achieves 787 Power On" (Press release). Boeing. June 20, 200. 
  18. "Daydream believer: How different is the Boeing 787?". Flight International. Retrieved December 14, 2010. 
  19. "'Name Your Plane' sweepstakes". Boeing Frontiers Online. July 2003. Retrieved September 28, 2007. 
  20. Norris & Wagner 2009, p. 40.
  21. "Boeing Launches 7E7 Dreamliner". Boeing (Press release). April 26, 2004. Retrieved June 14, 2011. 
  22. "ANA says Denver still in hunt for non-stop to Tokyo". Metro Denver. April 8, 2009. Retrieved December 14, 2010. 
  23. 23.0 23.1 Shifrin, Carole (March 27, 2006). "Dream start". Flight International. Retrieved September 7, 2011. 
  24. "The Dream of Composites". R&D Magazine. November 20, 2006. Retrieved November 23, 2012. 
  25. Walz, Martha (November 20, 2006). "The Dream of Composites". RD mag. Retrieved September 2, 2011. 
  26. Norris, Guy (January 9, 2009). "Boeing Rules Out 787 Window Change". Aviation Week. Retrieved June 14, 2011. 
  27. Ogando, Joseph (June 7, 2007). "Design News – Features – Boeing's 'More Electric' 787 Dreamliner Spurs Engine Evolution". designnews.com. Retrieved September 7, 2011. 
  28. Norris & Wagner 2009, p. 48.
  29. Pandey, Mohan (2010). How Boeing Defied the Airbus Challenge. USA: Createspace. ISBN 978-1-4505-0113-2. 
  30. Marsh, George. "Boeing's 787: trials, tribulations, and restoring the dream". Reinforced Plastics. Retrieved July 29, 2010. 
  31. "Boeing boosts aircraft prices 5.5% on rising cost of labor, materials". Air Transport World. June 26, 2007. Retrieved September 2, 2011. 
  32. Fierd Boeing engineer calls 787 fuselage unsafe
  33. Review - History of 787 Composites Project at Boeing
  34. "Boeing Unveils 787 Final Assembly Factory Flow." Boeing, December 6, 2006. Retrieved September 3, 2011.
  35. "Boeing's Big Dream". Fortune. May 5, 2008. p. 182. . (online version).
  36. "Boeing unveils 787 Dreamliner; Airbus sends congrats". USA Today. July 9, 2007. Retrieved September 2, 2011. 
  37. "Boeing's Big Dream". Fortune. May 5, 2008. p. 187. 
  38. "Boeing's Big Dream", Fortune, May 5, 2008, p. 184
  39. Seo, Sookyung (September 29, 2010). "Boeing 787 Supplier Korea Aerospace Hires Share-Sale Arrangers". Bloomberg. Retrieved September 2, 2011. 
  40. "Boeing Completes Acquisition of Vought Operations in South Carolina" (Press release). Boeing. July 30, 2009. Retrieved September 2, 2011. 
  41. Gates, D. (September 11, 2005). "Boeing 787: Parts from around world will be swiftly integrated". The Seattle Times. Retrieved September 2, 2011. 
  42. "Korean Air to Buy 10 ‘787 Dreamliners’". The Korea Times. July 12, 2007. 
  43. "Boeing" (PDF). HCL Technologies. Retrieved January 20, 2013. 
  44. "India's Tata Group to supply parts for Boeing Dreamliner". Google. Agence France-Presse. February 6, 2008. Retrieved February 7, 2008. 
  45. Bhagwat, Ramu (February 7, 2008). "Tatas to make Boeing 787 parts at Mihan". India Times (Times News Network). Retrieved September 2, 2011. 
  46. 46.0 46.1 "787 Dreamliner International team facts" (Press release). Boeing. Retrieved June 10, 2010. 
  47. "Korean Air ready for 787 ramp up". The Brisbane Times. September 30, 2010. Retrieved September 3, 2011. 
  48. "Boeing's Big Dream". Fortune. May 5, 2008. p. 189. 
  49. Kennedy, Bill. "Wheels up", Cutting Tool Engineering, March 2009. Accessed: January 14, 2014.
  50. Coulom, Dan (August 20, 2007). "Hamilton Sundstrand delivers first cabin air conditioning packs for Boeing 787 Dreamliner" (press release). Hamilton Sundstrand. Archived from the original on August 28, 2007. Retrieved August 21, 2007. 
  51. "Boeing considers moving 787-9 tail build in-house". ATW Online. October 30, 2010. Retrieved October 30, 2010. 
  52. Gates, Dominic (May 15, 2007). "Boeing shares work, but guards its secrets". The Seattle Times. Retrieved September 2, 2011. 
  53. Moores, Victoria. "Pictures: Boeing begins 787 final assembly". Flight International, May 22, 2007.
  54. Deb dogs Finmeccanica. "In focus". Flight global. 
  55. "International Lease Finance Corp". ATW Online. Penton Media. November 12, 2007. 
  56. "Boeing Still Working On 787 Weight Issue, Carson Says". Associated Press. December 7, 2006. 
  57. "Boeing to deliver test 787s to its customers". Financial Times. July 6, 2007. 
  58. Wallace, James (December 7, 2006). "Virtual rollout of the 78". Seattle Post-Intelligencer (Hearst Communications Inc). Retrieved September 2, 2011. 
  59. "Boeing Celebrates the Premiere of the 787 Dreamliner" (Press release). Boeing. July 8, 2007. Retrieved June 14, 2011. 
  60. Trimble, Stephen (September 10, 2007). "Boeing 787 first flight suffers two-month delay". Flight International. Retrieved September 2, 2011. 
  61. "Boeing Revises 787 First Flight and Delivery Plans; Adds Schedule Margin to Reduce Risk of Further Delays" (Press release). Boeing. April 9, 2008. Retrieved September 2, 2011. 
  62. "Final Assembly Begins on Another Boeing 787 Dreamliner" (Press release). Boeing. February 15, 2008. Retrieved September 2, 2011. 
  63. "Boeing's Big Dream", Fortune, May 5, 2008, p. 182.
  64. "Boeing Delays 787's First Flight to November–December (Update4)". Bloomberg. September 5, 2007. Retrieved September 3, 2011. 
  65. Carpenter, Dave (October 10, 2007). "Boeing Delays First 787s by Six Months". Yahoo!. Associated Press. Archived from the original on October 12, 2007. Retrieved December 22, 2007. 
  66. Clark, Nicola (October 10, 2007). "Boeing Delays Deliveries of 787". The New York Times. Retrieved December 22, 2007. 
  67. "Boeing Reschedules Initial 787 Deliveries and First Flight". Boeing. October 10, 2007. Retrieved September 3, 2011. 
  68. "787 Program Chief Replaced at Boeing". The New York Times. Associated Press. October 17, 2007. Retrieved November 24, 2007. 
  69. "Boeing Shifts Schedule for 787 First Flight" (Press release). Boeing. January 16, 2008. 
  70. "Boeing Buys Vought Share of Fuselage Builder". Aviation Week. March 28, 2008. Retrieved June 14, 2011. 
  71. Sanders, Peter (July 8, 2009). "Boeing Sets Deal to Buy a Dreamliner Plant". The Wall Street Journal. 
  72. 72.0 72.1 "787 variants delayed to at least 2012". Flight International. April 4, 2008. 
  73. Gates, Dominic (November 5, 2008). "Fasteners incorrectly installed". The Seattle Times. Retrieved November 11, 2008. 
  74. "New delay". 
  75. "Boeing Reviews Dreamliner Schedule for More Delays (Update2)". Bloomberg. December 4, 2008. Retrieved September 2, 2011. 
  76. "Boeing confirms 787 first flight pushed back to 2Q 2009". Flight International. December 11, 2008. Retrieved December 14, 2010. 
  77. "United may seek damages for 787 delays". PSBJ. February 27, 2012. Retrieved March 14, 2012. 
  78. "Govt approves Air India compensation package for Dreamliner delay". July 25, 2012. Retrieved July 25, 2012. 
  79. "European and US regulators certify Trent 1000 for Boeing 787". Flight International. Retrieved December 14, 2010. 
  80. "Boeing performs crash test on 787 fuselage section". Komo News. August 23, 2007. Retrieved September 28, 2009. 
  81. 81.0 81.1 Snyder, Sean, ed. (August 29, 2007). "Boeing Performs Crash Test on 787 Dreamliner: Tests currently under analysis". Design News. Reed Elsevier. Retrieved September 9, 2011. 
  82. Gillespie, Elizabeth M (September 6, 2007). "Boeing Says 787 Fuselage Test a Success". Forbes. Retrieved September 7, 2007. 
  83. Snyder, Sean, ed. (September 6, 2007). "Announcement of Boeing Fuselage Crash Test Results". Design News. Reed Business Information. Retrieved September 9, 2011. 
  84. 84.0 84.1 84.2 Gates, Dominic (September 18, 2007). "Fired engineer calls 787's plastic fuselage unsafe". The Seattle Times. Retrieved November 24, 2007. 
  85. 85.0 85.1 Matlack, Carol (June 26, 2009). "More Boeing 787 Woes as Qantas Drops Order". BusinessWeek. Bloomberg. Retrieved December 14, 2010. 
  86. http://seattletimes.com/html/boeingaerospace/2003889663_boeing180.html
  87. "GEnx-1B Engine Receives FAA Certification" (press release). GE Aviation. March 31, 2008. Retrieved April 4, 2008. 
  88. "PowerOn Interactive Site". TPN interactive. Retrieved December 14, 2010. 
  89. "Boeing Completes 787 Dreamliner 'High Blow' Test" (Press release). Boeing. September 27, 2008. Retrieved September 2, 2011. 
  90. "FAA Approves Boeing 787 Dreamliner Maintenance Program" (Press release). Boeing. December 22, 2008. Retrieved September 2, 2011. 
  91. "Boeing 787 Dreamliner Moves to Flight Line for Testing" (Press release). Boeing. May 3, 2009. Retrieved May 3, 2009. 
  92. "Bernstein Research sees further 787 delays, bigger range shortfall". ATW Daily News. May 4, 2009. Retrieved September 9, 2011. 
  93. Ostrower, Jon. "Boeing confirms 787 weight issues". Flight International, May 7, 2009. Retrieved September 2, 2011.
  94. Ostrower, Jon. "Concerns raised over expected 787 range shortfall". Flight International, March 9, 2009. Retrieved September 2, 2011.
  95. Ostrower, Jon. "Shanghai casts doubt over early 787 delivery slots". Flight International, March 14, 2009. Retrieved September 2, 2011.
  96. "Boeing Postpones 787 First Flight" (Press release). Boeing. June 23, 2009. 
  97. Gates, Dominic (July 30, 2009). "Boeing 787 wing flaw extends inside plane". Seattletimes.nwsource.com. Retrieved December 14, 2010. 
  98. "Dreamliner 787 Composites Approach Takes Another Big Hit". Design News. September 10, 2009. Retrieved September 11, 2009. 
  99. "Boeing Announces New 787 Schedule and Third-Quarter Charge" (Press release). Boeing. August 27, 2009. 
  100. Gates, Dominic (August 28, 2009). "Boeing still sure delayed 787 will be profitable". The Seattle Times. Retrieved September 23, 2009. 
  101. 101.0 101.1 Cohen, Aubrey. "Boeing illegally put second 787 line in S.C., complaint says." Seattle Post-Intelligencer, April 20, 2011. Retrieved September 2, 2011.
  102. Ostrower, Jon (December 13, 2009). "Boeing clears 787 to fly 15 December". Air Transport Intelligence. Retrieved September 2, 2011. 
  103. "Boeing Completes 787 Dreamliner High-Speed Taxi Test" (Press release). Boeing. December 12, 2009. Retrieved September 3, 2011. 
  104. "787 approaches final gauntlet testing". Flight International. December 8, 2009. Retrieved December 15, 2009. 
  105. Ostrower, Jon (December 15, 2009). "Boeing 787 Dreamliner lifts off on maiden flight". Flight International. Retrieved September 2, 2011. 
  106. Boeing 787 jet lands after maiden flight. AU: Nine MSN. December 16, 2009. Retrieved September 9, 2011. 
  107. Ostrower, Jon (December 15, 2009). "Boeing completes 787 maiden sortie". Flight International. Retrieved December 16, 2009. 
  108. "Boeing Dreamliner completes first flight". BBC News. December 15, 2009. Retrieved September 9, 2011. 
  109. Mecham, Michael; Norris, Guy (December 18, 2009). "Boeing Plans 8.5 Months of 787 Testing". Aviation Week. Retrieved June 14, 2011. 
  110. "The B777". Triple7 World.
  111. "Boeing Commercial Airplane Group No.2". FlightAware. December 22, 2009. 
  112. "Second Boeing 787 Dreamliner Completes First Flight". Boeing, December 22, 2009. Retrieved September 2011.
  113. 113.0 113.1 "787 Dreamliner Flight Test site". Boeing. Retrieved August 15, 2011. 
  114. Ostrower, Jon. "Boeing completes 787 flutter and ground effects testing". Flight International, March 24, 2010. Retrieved September 3, 2011.
  115. "Boeing Completes Ultimate-Load Wing Test on 787" (Press release). Boeing. March 28, 2010. Retrieved March 30, 2010. 
  116. Sanders, Peter (March 30, 2010). "Boeing's Dreamliner Lags Testing Schedule". The Wall Street Journal. Retrieved September 2, 2011. 
  117. Paur, Jason (March 29, 2010). "Boeing 787 Passes Incredible Wing Flex Test". Wired. 
  118. "Boeing Confirms Success on 787 Wing, Fuselage Ultimate Load Test" (Press release). Boeing. April 7, 2010. 
  119. "Boeing 787 in hot/cold testing in Florida". UPI, April 23, 2010. Retrieved September 3, 2011.
  120. "First 787 GEnx Engine Runs Complete". Boeing, May 12, 2010.
  121. "VIDEO: GEnx powered 787 completes maiden flight". Flight International. Retrieved July 21, 2010. 
  122. "Horizontal stabiliser gaps force 787 inspections and reduced flight envelope". Flight International. June 25, 2010. Retrieved June 26, 2010. 
  123. 123.0 123.1 Jason Paur (June 17, 2010). "Boeing 787 Withstands Lightning Strike". Wired. 
  124. "FAA Probes American's Inspections". The Wall Street Journal, May 16, 2008, p. B1
  125. Gates, Dominic. "Building the 787, When lightning strikes". The Seattle Times, March 5, 2006. Retrieved September 3, 2011.
  126. Gates, Dominic (February 8, 2009). "FAA to loosen fuel-tank safety rules, benefiting Boeing's 787". The Seattle Times. Retrieved September 2, 2011. 
  127. "Dreamliner lands at Farnborough". BBC News, July 18, 2010. Retrieved July 18, 2010.
  128. Mustoe, Howard (August 24, 2010). "Rolls-Royce Blowout Shutters Boeing, Airbus Test Bed". Bloomberg. Retrieved August 29, 2010. 
  129. "Boeing delays delivery of 787 aircraft until next year". BBC. August 27, 2010. Retrieved August 27, 2010. 
  130. Ostrower, Jon (August 28, 2010). "Lack of production engine for Airplane Nine drives 787 delay". Flight International. Retrieved August 29, 2010. 
  131. "Boeing faces claim on 787 delays; sixth flight test aircraft won't fly until September". ATW Online. August 16, 2010. Retrieved August 16, 2010. 
  132. "787 flight test fleet to expand". ATW Online. September 10, 2010. Retrieved September 9, 2010. 
  133. Norris, Guy. "Boeing 787 Suffers Engine Surge During Tests". Aviation Week, September 16, 2010. Retrieved June 14, 2011.
  134. "Sixth Boeing 787 Makes First Flight, Testing Program Making Good Progress". Boeing, October 4, 2010.
  135. "Boeing faces prospect of further 787 delay". Flight International. November 5, 2010. Retrieved November 6, 2010. 
  136. "JAL hit by further 787 delivery delay". Air Transport Intelligence. November 4, 2010. Retrieved November 6, 2010. 
  137. Koenig, David (November 9, 2010). "Boeing 787 makes emergency landing on test flight". Finance (Yahoo!). Associated Press. Retrieved September 9, 2011. 
  138. Gates, Dominic (November 9, 2010). "Electrical fire forces emergency landing of 787 test plane". The Seattle Times. Retrieved November 9, 2010. 
  139. "Boeing 787 Makes Emergency Landing On Test Flight". NPR. Associated Press. November 9, 2010. Retrieved November 9, 2010. 
  140. "787 electrical fire raises prospect of further delay". Flight global. November 15, 2010. Retrieved November 15, 2010. 
  141. Norris, Guy. "787s Grounded After Emergency Landing". Aviation Week, November 10, 2010. Retrieved June 14, 2011.
  142. Norris, Guy. "787s Remain Grounded". Aviation Week, November 11, 2010. Retrieved June 14, 2011.
  143. Rothman, Andrea. "Boeing 787 Fire Sparked by Stray Tool". Bloomberg, November 25, 2010.
  144. Ostrower, Jon. "787 flight tests resume, final schedule unclear". Air Transport Intelligence, December 23, 2010. Retrieved September 2, 2011.
  145. "Boeing Resumes 787 Flight Testing". Boeing, December 23, 2010.
  146. "Boeing Sets 787 First Delivery for Third Quarter" (Press release). Boeing. January 18, 2011. Retrieved September 2, 2011. 
  147. "Boeing expects first 787 delivery in the third quarter". Flight International. January 18, 2011. 
  148. Ostrower, Jon (February 24, 2011). "Boeing passes 1,000 787 flights". Air Transport Intelligence. Retrieved September 2, 2011. 
  149. Koh, Quintella (July 4, 2011). "All Nippon Airways starts week-long 787 validation". Air Transport Intelligence. Retrieved July 6, 2011. 
  150. Ostrower, Jon. "Certification flight testing complete, the 787 fleet is still busy". Flightblogger on Flightglobal.com, August 15, 2011.
  151. Ostrower, Jon. "Boeing confirms 787 certification flight test completion". Air Transport Intelligence, August 17, 2011. Retrieved September 2, 2011.
  152. "787 wins certification from FAA and EASA". Air Transport Intelligence. August 26, 2011. Retrieved August 26, 2011. 
  153. 153.0 153.1 153.2 "FAA Approves Production of Boeing 787 Dreamliner" (press release). FAA. August 26, 2011. Retrieved August 29, 2011. 
  154. Hananel, Sam. "Labor board drops high-profile Boeing complaint" Associated Press, December 9, 2011. Retrieved December 12, 2011.
  155. Peterson, Kyle (April 27, 2012). "Boeing Debuts First 787 Dreamliner in South Carolina". Reuters. Retrieved May 3, 2012. 
  156. Ostrower, Jon (September 25, 2011). "Boeing formally delivers first 787 to ANA". Flight International. Retrieved September 26, 2011. 
  157. Gunter, Lori; Lefeber, Scott (September 25, 2011). "Boeing, ANA Complete Contractual Delivery of First 787 Dreamliner". Boeing. Retrieved September 26, 2011. 
  158. "First delivered Boeing 787 takes off for Japan". Reuters. September 27, 2011. Retrieved September 27, 2011. 
  159. Associated Press. "All Nippon Airways of Japan takes delivery of first Boeing 787 at Everett, Wash., factory". The Washington Post, September 26, 2011.
  160. "Boeing delivers its second 787 and jumbo freighter". The Seattle Times, October 13, 2011.
  161. 161.0 161.1 Tim Kelly (October 26, 2011). "Dreamliner carries its first passengers and Boeing's hopes". Reuters. Retrieved October 28, 2011. 
  162. "Boeing's Dreamliner completes first commercial flight". BBC News. October 26, 2011. Retrieved October 26, 2011. 
  163. "ANA 787 connection website". Ana.co.jp. Retrieved January 20, 2013. 
  164. "Boeing 787 Dreamliner Sets Speed, Distance Records". Boeing Press Release, December 8, 2011
  165. "Boeing 787 Dreamliner makes first-ever biofuel-powered Pacific crossing" GizMag, April 17, 2012. Retrieved April 20, 2012.
  166. "Boeing Announces 787 Dream Tour". Boeing. December 4, 2011. Retrieved February 24, 2012. 
  167. "Boeing announces next segment of 787 dream tour". Boeing. February 22, 2012. Retrieved February 24, 2012. 
  168. "787 Dreamliner Dream Tour page". Boeing. Retrieved February 24, 2012. 
  169. Creedy, Steve (June 12, 2012). "Rave reviews for Boeing's 787". The Australian (Business with The Wall Street Journal). Retrieved 2012-12-12. 
  170. "Farnborough: Qatar unveils first 787 at show". Flight International. July 10, 2012. Retrieved July 11, 2012. 
  171. "NTSB urges grounding for certain GEnx-powered 787 and 747-8s". Flight International. September 15, 2012. Retrieved October 1, 2012. 
  172. "Boeing 787: A Matter of Materials – Special Report: Anatomy of a Supply Chain". IndustryWeek.com, December 1, 2007.
  173. "787 Dreamliner Program Fact Sheet". Boeing web page. The Boeing Company. Retrieved July 10, 2007. 
  174. 174.0 174.1 174.2 174.3 174.4 Hawk, Jeff (Director Certification, Government and Environment 787 Programs) (May 25, 2005). "The Boeing 787 Dreamliner: More Than an Airplane" (PDF). Presentation to AIAA/AAAF Aircraft Noise and Emissions Reduction Symposium. American Institute of Aeronautics and Astronautics and Association Aéronautique et Astronautique de France. Retrieved July 15, 2007. 
  175. Dominic Gates (December 23, 2009). "Boeing's 787 Dreamliner is no lightweight". Articles.latimes.com. Retrieved January 21, 2013. 
  176. 176.0 176.1 Zaman, K.B.M.Q.; Bridges, J.E.; Huff, D.L. "Evolution from 'Tabs' to 'Chevron Technology' – a Review" (PDF). Proceedings of the 13th Asian Congress of Fluid Mechanics 17–21 December 2010, Dhaka, Bangladesh (NASA Glenn Research Center. Cleveland, Ohio, USA.): pp. 47–63.  1.34 Mb
  177. "Boeing 787 program background". Retrieved May 4, 2007. 
  178. "Boeing 787 from the Ground Up". Boeing, Aero magazine, QTR_04/06
  179. Sinnet, Mike (2007). "Saving Fuel and enhancing operational efficiencies". Boeing. Retrieved January 17, 2013. 
  180. Susanna Ray, Thomas Black & Mary Jane Credeur. "Boeing 787 Groundings Traced to One-of-a-Kind Technology" Bloomberg, January 17, 2013. Retrieved January 17, 2013.
  181. "Taking to the skies", p. 47. Aviation Week and Space Technology, December 10, 2012.
  182. "787 No Bleed Systems". Boeing Aero magazine, Quarter 4, 2007.
  183. 787 integrates new composite wing deicing system. Composites World, December 30, 2008.
  184. 184.0 184.1 Croft, John (July 2006). "Airbus and Boeing spar for middleweight" (PDF). Aerospace America (American Institute of Aeronautics and Astronautics). Retrieved July 8, 2007. 
  185. Universal-type gust alleviation system for aircraft, United States Patent 4905934. Free patents online, original publication March 6, 1990. Retrieved December 9, 2009.
  186. "Taking to the skies". Aviation Week and Space Technology. December 10, 2012. p. 48. 
  187. "What is ARINC 661?" Web archive of Engenuity Technologies page.
  188. "Boeing Unveils 787 Dreamliner Flight Deck." Boeing, August 31, 2005. Retrieved September 2, 2011.
  189. Coppinger, Rob (October 6, 2006). "NASA Orion crew vehicle will use voice controls in Boeing 787-style Honeywell smart cockpit". Flight International. Retrieved October 6, 2006. 
  190. 190.0 190.1 Brewin, Bob (January 22, 2013). "A 2006 battery fire destroyed Boeing 787 supplier’s facility". NextGov. Retrieved January 23, 2013. 
  191. "Power conversion". Meggitt/Securaplane. Retrieved January 30, 2013. 
  192. 192.0 192.1 Dalløkken, Per Erlien (January 17, 2013). "Her er Dreamliner-problemet" (in Norwegian). Teknisk Ukeblad. Retrieved January 17, 2013.  English translation
  193. "Lithium Power". GS Yuasa. Retrieved January 20, 2013. 
  194. 194.0 194.1 "Thales selects GS Yuasa for Lithium ion battery system in Boeing’s 787 Dreamliner". GS Yuasa. Retrieved January 18, 2013. 
  195. "LVP series". GS Yuasa. Retrieved January 18, 2013. 
  196. "Development of Large-sized Lithium-ion Battery for Aviation Applications" (PDF). GS Yuasa. Retrieved January 20, 2012. 
  197. "Boeing: 787 battery blew up in ’06 lab test, burned down building". Seattle Times. January 24, 2013. Retrieved January 24, 2013. 
  198. "FAA Statement". FAA. January 16, 2013. Retrieved January 17, 2013. 
  199. McHale, John (April 2005). "AFDX technology to improve communications on Boeing 787". Military & Aerospace Electronics Magazine (PennWell). Retrieved July 8, 2007. 
  200. 200.0 200.1 200.2 Zetter, Kim (January 4, 2008). "FAA: Boeing's New 787 May Be Vulnerable to Hacker Attack". Wired. Retrieved January 6, 2008. 
  201. "Special Conditions: Boeing Model 787-8 Airplane; Systems and Data Networks Security—Isolation or Protection From unauthorized Passenger Domain Systems Access". Federal Aviation Administration. U.S. Government Printing Office (GPO). January 3, 2008. Retrieved November 1, 2012. "For these design features, the applicable airworthiness regulations do not contain adequate or appropriate safety standards for protection and security of airplane systems and data networks against unauthorized access." 
  202. "Market Research Report: Strategic Business Expansion of Carbon Fiber, Torayca" (PDF) (press release). Toray Industries. April 12, 2005. Archived from the original on February 4, 2007. Retrieved July 9, 2007. 
  203. "Boeing Testing Sample Sonic Cruiser Fuselage". Boeing. July 24, 2002. 
  204. "Development Work on Boeing 787 Noses Ahead". Boeing. July 13, 2005. Retrieved June 14, 2011. 
  205. "Low-Cost Composite Materials and Structures for Aircraft Applications". NATO Research & Technology Organisation. May 7–11, 2001. Retrieved July 21, 2010. 
  206. Pike, John (January 4, 2011). "C-17 Globemaster III". Globalsecurity.org. Retrieved January 11, 2011. 
  207. "Dan Rather Reports – Boeing 787 composite concerns (1 of 4)". YouTube. November 7, 2007. Retrieved December 15, 2009. 
  208. Holmes, Stanley (June 19, 2006). "The 787 Encounters Turbulence". Bloomberg BusinessWeek. Bloomberg. 
  209. Haines, Lester (September 19, 2007). "787 unsafe, claims former Boeing engineer". The Register. Retrieved January 16, 2013. 
  210. "Does composite use in airplane manufacturing trade passenger safety for profits?". Fort Worth Star-Telegram. December 3, 2009. 
  211. Wallace, James (January 9, 2006). "Airbus to use composites". Seattle Post-Intelligencer (Hearst Communications Inc.). Retrieved September 2, 2011. 
  212. Bickers, Chaz (July 2006). "Good as GoldCare: Revolutionary 787 fleet support program complements airplane's technical achievements" (PDF). Boeing Frontiers (Boeing). Retrieved September 2, 2011. 
  213. Johnsson, Julie (September 2, 2007). "Boeing coining plan for composite parts". Chicago Tribune (Tribune Interactive). 
  214. "GR & Boeing Demo. Quiet Technology" (press release). Goodrich. August 16, 2005. Archived from the original on October 19, 2007. Retrieved July 10, 2007. 
  215. Corliss, Bryan (June 21, 2009). "What's new, different about the 787". The Daily Herald. Retrieved January 22, 2011. 
  216. 216.0 216.1 "787 Is not Meeting 24hour-Engine Change Promo, lessor says (PDF). Leeham. July 18, 2005. 
  217. 217.0 217.1 "Section 2.4 Interior Arrangements; Section 2.5 Cabin Cross–Sections" (PDF). D6-58331, Boeing 787 Airplane Characteristics for Airport Planning. Boeing Commercial Aircraft. July 2012. pp. 10, 13. 
  218. Flynn, David. "BA reveals Airbus A380, Boeing 787 Dreamliner seatmaps". Australian Business Traveller. Retrieved December 21, 2012. 
  219. Wallace, James (November 18, 2005). "Boeing details 787 improvements". Seattle Post-Intelligencer (Hearst Communications). Retrieved September 2, 2011. 
  220. "A330 and A340 family specifications". Airbus. 
  221. "A350 XWB Xtra comfort". Airbus. Archived from the original on February 5, 2008. 
  222. "Airbus unveils widebody, says A350 XWB will top 787 and 777". Seattle Post-Intelligencer. July 18, 2006. Retrieved December 14, 2010. 
  223. Verghese, Vijay. "A survey of the best airline economy seats". Smart travel Asia. Retrieved February 12, 2012. 
  224. Wallace, James (February 22, 2006). "Aerospace Notebook: More seats sought on 787". Seattle-PI. Retrieved February 12, 2012. 
  225. Cram, Jennifer (March 26, 2007). "Boeing Unveils Improved Access Features on the 787". Boeing press release. Boeing. Archived from the original on October 11, 2007. Retrieved July 10, 2007. 
  226. 226.0 226.1 Wallace, James (June 5, 2007). "Aerospace Notebook: In Airbus, Boeing duel, jet windows a shut case". Seattle Post-Intelligencer. Retrieved September 2, 2011. 
  227. 227.0 227.1 Wallace, James (November 26, 2008). "Continental plans Dreamliner seats to be roomy, with a view". Seattle Post-Intelligencer (Hearst Communications). Retrieved November 28, 2008. 
  228. Norris & Wagner 2009, p. 49.
  229. Norris, Guy (December 20, 2005). "Qantas deal sees launch of 787-9". Flight International. Reed Elsevier. 
  230. 230.0 230.1 Schofield, Adrian (June 24, 2012). "The 787 windows issue (with pics)". Aviation Week. Retrieved January 29, 2013. 
  231. 231.0 231.1 Parker Brown, David (June 21, 2012). "ANA is NOT Looking to Install Sunshades on their Boeing 787s — No Complaints Were Received". Airline Reporter. Retrieved January 27, 2013. 
  232. 232.0 232.1 Turner, Edgar (2010). The Birth of the 787 Dreamliner. Kansas City, MO: Andrews McMeel. p. 220. ISBN 978-0-7407-9667-8. 
  233. Flynn, David (October 26, 2011). "Light fantastic: Boeing 787 Dreamliner's digital window tinting". Australian Business Traveller. Retrieved January 27, 2013. 
  234. 's+Like+to+Fly+for+10+Hours+on+a+Boeing+787+Dreamliner "What It's Like to Fly for 10 Hours on a Boeing 787 Dreamliner". Jaunted. January 14, 2013. Retrieved January 27, 2013. "sun still annoyingly, persistently pierces through" 
  235. 235.0 235.1 "Interior Lighting Systems, Mood Lighting". DE: Diehl Aerospace. Retrieved May 1, 2007. 
  236. "Mood Lighting System". Diehl Aerospace. 2012. Retrieved January 1, 2012. 
  237. Gubisch, Michael (December 20, 2005). Cabin interior advances beyond seats and IFE. "In Focus". Flight International. Reed Elsevier. 
  238. 238.0 238.1 238.2 Adams, Marilyn (November 1, 2006). "Breathe easy, Boeing says". USA Today. 
  239. "Boeing 7E7 Offers Preferred Cabin Environment, Study Finds." Boeing, July 19, 2004. Retrieved June 14, 2011.
  240. Ogando, Joseph, ed. (June 4, 2007). "Boeing's 'More Electric' 787 Dreamliner Spurs Engine Evolution: On the 787, Boeing eliminated bleed air and relied heavily on electric starter generators". Design News. Retrieved September 9, 2011. 
  241. Dornheim, Michael (March 27, 2005). "Massive 787 Electrical System Pressurizes Cabin". Aviation Week & Space Technology. Retrieved January 1, 2012. 
  242. "ICAO Document 8643". International Civil Aviation Organization. Retrieved December 10, 2011. 
  243. "Boeing 787-3 Dreamliner Fact Sheet". Boeing. Archived from the original on November 19, 2007. Retrieved November 23, 2007. 
  244. Norris & Wagner 2009, p. 38.
  245. Baseler, Randy (May 20, 2005). "Kangaroo hop". Randy's Journal. The Boeing Company. Retrieved July 10, 2007. 
  246. Pate, R. Hewitt (Assistant Attorney General, Antitrust Division); McDonald, Bruce (Deputy Assistant Attorney General, Antitrust Division); Gillespie, William H. (Economist) (May 24, 2005). "Congestion And Delay Reduction at Chicago O'Hare International Airport: Docket No. FAA-2005-20704". Comments of The United States Department of Justice. Before The Federal Aviation Administration Department of Transportation. Retrieved September 2, 2011. 
  247. Ostrower, Jon (January 8, 2010). "ANA abandons 787-3". Flight International. 
  248. "Boeing will likely scrap 787-3". The Seattle Times. February 2, 2010. Retrieved January 20, 2014. 
  249. Ray, Susanna (December 13, 2010). "Boeing raises aircraft prices 5.2%, cancels short-haul 787". The Seattle Times. Retrieved January 20, 2014. 
  250. 250.0 250.1 "Boeing 787-8 Dreamliner Fact Sheet". Boeing. Retrieved June 20, 2013. 
  251. 251.0 251.1 251.2 "Boeing 787-9 Dreamliner Fact Sheet". Boeing. Retrieved June 20, 2013. 
  252. 252.0 252.1 Boeing 787 Airport Compatibility Brochure. Boeing, March 2011.
  253. Wallace, James. "Aerospace Notebook: New 787 is taking off". Seattle Post-Intelligencer, April 27, 2005.
  254. "Boeing delays first 747-8I and 787-9 deliveries". Flight global. October 27, 2011. Retrieved January 20, 2013. 
  255. "Boeing clears firm configuration hurdle for 787-9". Flight International. 2010. Retrieved July 2, 2010. 
  256. "Boeing 787-9 takes off for maiden flight"
  257. Norris & Wagner 2009, p. 50.
  258. Cha, Frances (11 November 2013). "Air New Zealand to launch first route for Boeing 787-9 Dreamliner". CNN. Retrieved 26 December 2013. 
  259. "Air New Zealand announces world’s first scheduled 787-9 route". Air New Zealand media release, 7 Nov 2013.
  260. 260.0 260.1 260.2 "Boeing Launches 787-10 Dreamliner". Boeing. Retrieved June 18, 2013. 
  261. Booton, Jennifer. "Boeing Launches Stretched-Out 787 with $30B in Orders". FOXBusiness. Retrieved June 22, 2013. 
  262. Thomas, G (December 23, 2005). "Boeing bullish on 787-10, Dreamliner production". Air Transport World (ATW Media Group). Retrieved September 2, 2011. 
  263. Trimble, Stephen (June 18, 2013). "PARIS: Boeing launches 787-10 with five customers". Flight International. Retrieved June 29, 2013. 
  264. Baseler, Randy (February 8, 2006). "Dash 10". Boeing Blog. Retrieved November 17, 2011. 
  265. Cameron, Doug; Done, Kevin (July 8, 2007). "Customers guard Boeing 787 delivery slots". Financial Times. Retrieved July 8, 2007. 
  266. Leach, Yvonne; Gunter, Lori (June 19, 2007). "Boeing Highlights Progress on First 787, Subsequent Airplanes". Boeing Press Release. Retrieved June 23, 2007. 
  267. Lunsford, J. Lynn (March 27, 2006). "Boeing to Build Stretch 787 Jet". The Wall Street Journal. 
  268. Kaminski-Morrow, David (May 30, 2013). "Singapore Airlines signs up for Boeing's 787-10X Dreamliner". Flight International. Retrieved May 30, 2013. 
  269. "Singapore Airlines signs up for Boeing's 787-10X Dreamliner". Herald Net. May 30, 2013. Retrieved June 1, 2013. 
  270. Flynn, David (May 30, 2013). "Singapore Airlines signs up for Boeing's 787-10X Dreamliner". Australian Business Traveller. Retrieved May 30, 2013. 
  271. "Introducing the Boeing 787-10 Dreamliner". The Boeing Company. Retrieved June 18, 2013. 
  272. Metcalf, Eddy. "Boeing To Launch 787-10 Dreamliner The Most Efficient Jetliner In History". Aviation Online Magazine. Retrieved 2013-07-07. 
  273. Ng, J. "Boeing executive says no freighter version of 787 is likely for 10 years". Marketwatch (Dow Jones). Retrieved January 2, 2008. 
  274. Butler, Amy. "Boeing Only Contender for New Air Force One". Aviation Week & Space Technology. Retrieved June 14, 2011. 
  275. "Japan Airlines announces delivery of 787". Japan Airlines. March 21, 2012. Retrieved June 12, 2012. 
  276. "Ethiopian receives first 787". Flight International. August 14, 2012. Retrieved October 1, 2012. 
  277. "Air India receives third Boeing 787 Dreamliner". Ibnlive.com. August 14, 2012. Retrieved October 1, 2012. 
  278. "Boeing Celebrates Delivery of LAN Airlines' first 787 Dreamliner". hub.united.com. August 31, 2012. Retrieved October 27, 2012. 
  279. "United Airlines plans first 787 Dreamliner flight Sunday". Denver Business Journal, November 2, 2012.
  280. "United Completes FAA Certification Program for Boeing 787 Operations". airlinesanddestinations.com, November 2, 2012.
  281. "Qatar Airways first Boeing 787 takes off to Dubai". India Infoline News. November 21, 2012. Retrieved November 28, 2012. 
  282. "LOT Polish Airlines takes delivery of its first Boeing 787, becomes the first European carrier to fly the Dreamliner". worldairlinenews.com, November 15, 2012.
  283. "China Southern operates first 787 flight". FlightGlobal. 7 June 2013. Retrieved 14 December 2013. 
  284. "Boeing 787 Dreamliner launch: 300 passengers enjoy surprise flight as the future of aviation arrives at Gatwick". independent.co.uk. June 21, 2013. Retrieved June 21, 2013. 
  285. "Slik er det å fly Dreamliner". vg.no. July 6, 2013. 
  286. L_3105 (July 8, 2013). "[人民日报]海航迎来首架波音787客机-海南视窗-人民网". Hi.people.com.cn. Retrieved July 28, 2013. 
  287. "British Airways Launches Boeing 787 Passenger Operations :: Routesonline". Retrieved 8 November 2013. 
  288. http://www.prnewswire.com/news-releases/aeromexico-operates-its-first-flight-from-new-york-city-to-mexico-city-with-its-boeing-787-dreamliner-225068612.html
  289. "Dreamliner's maiden flight to Singapore". The Borneo Post. 19 October 2013. Retrieved 20 October 2013. 
  290. "First flight for Jetstar's Boeing 787 Dreamliner". Australian Business Traveller. 13 November 2013. Retrieved 13 November 2013. 
  291. "Jetairfly B787 Dreamliner allows for unique flight". flightlevel.be. 10 December 2013. Retrieved 14 December 2013.  (in Dutch)
  292. Michael (August 26, 2011). "Boeing 787 Dreamliner – Date for First Delivery". Flight Story. Retrieved August 26, 2011. 
  293. "Recent Orders". The Boeing Company. December 31, 2013. Retrieved January 6, 2014. 
  294. "Annual Orders Summary: Boeing 787". The Boeing Company. Retrieved January 6, 2014. 
  295. "Current Year Deliveries". Boeing. December 2013. Retrieved October 11, 2013. 
  296. "Orders and Deliveries search page". Boeing. December 2013. Retrieved October 11, 2013. 
  297. "Boeing: Problems with 787 Dreamliner "Normal"". Frequent Business Traveler. December 16, 2012. Retrieved December 16, 2012. 
  298. "Boeing 787 Dreamliner: a timeline of problems". The Telegraph. July 28, 2013. Retrieved August 14, 2013. 
  299. "Two Boeing 787 incidents raise concerns about jet". Reuters. January 9, 2013. Retrieved January 9, 2013. 
  300. "U.S. Opens Dreamliner Safety Probe". The Wall Street Journal. January 9, 2013. Retrieved January 9, 2013. 
  301. "U.S. to review Dreamliner amid two more mishaps in Japan". Chicago Tribune. Retrieved January 11, 2013. 
  302. "Boeing 787 Dreamliner to be investigated by US authorities". The Guardian. Retrieved January 11, 2013. 
  303. "Japan Airlines Reports New Fuel Leak in Boeing 787". Associated Press. January 13, 2013. Retrieved January 13, 2013. 
  304. "JAL's grounded Dreamliner jet leaks fuel in tests". Reuters. January 13, 2013. Retrieved January 13, 2013. 
  305. Mukai, Anna (January 15, 2013). "Japan to Investigate Boeing 787 Fuel Leak as FAA Reviews". Bloomberg. Retrieved January 20, 2013. 
  306. "Heathrow shut after Boeing Dreamliner 787 fire". BBC News. July 12, 2013. Retrieved July 12, 2013. 
  307. "Ethiopian 787 In Heathrow Fire Incident". Aviation Week. July 12, 2013. Retrieved July 12, 2013. 
  308. Goad, Ben (July 13, 2013). "British investigators: No evidence Dreamliner fire related to batteries". The Hill. Retrieved July 13, 2013. 
  309. Martinez, Michael (July 12, 2013). "Fire, 'technical issue' on two Dreamliners raise new worries". CNN. Retrieved July 12, 2013. 
  310. "Batteries 'not linked' to 787 fire". BBC. July 13, 2013. Retrieved July 13, 2013. 
  311. Ray Massey. "Boeing Dreamliner fire at Heathrow linked to ANOTHER lithium battery... this time in the emergency beacon | Mail Online". Dailymail.co.uk. Retrieved July 28, 2013. 
  312. "Heathrow fire on Boeing Dreamliner 'started in battery component'". Guardian newspaper, July 18, 2013.
  313. "Special Bulletin S5/2013 - Boeing 787, ET-AOP". Air Accidents Investigation Branch. July 18, 2013. Archived from the original on July 28, 2013. 
  314. "Qatar grounds a 787 as glitches pile up on Boeing jet". Reuters, July 27, 2013.
  315. Kiyotaka Matsuda and Robert Wall (August 14, 2013). "Boeing 787 Hit by Setback With Fire-Extinguisher Wiring Flaw". Bloomberg. Bloomberg. Retrieved August 16, 2013. 
  316. Ostrower, Jon (August 16, 2013). "Boeing Traces Improperly Assembled Engine-Fire Extinguishers to Supplier's Bottles". Wall Street Journal. Wall Street Journal. Retrieved August 16, 2013. 
  317. Sobczyk, Marcin (September 25, 2013). "LOT Polish Airlines Grounds Dreamliners With Missing Fuel Filters". Wall Street Journal. Retrieved October 1, 2013. 
  318. Barteczko / Scott. "LOT airline Boeing Dreamliner forced to land in Iceland". Reuters. Reuters. Retrieved 1 October 2013. 
  319. Koranyi, Balazs; Lawson, Hugh (28 September 2013). "Norwegian Air takes Dreamliner out of service after breakdowns". Reuters. Retrieved 28 September 2013. 
  320. Norwegian airline returns new Dreamliner after repeated breakdowns Irishtimes
  321. http://www.aftenposten.no/okonomi/Norwegian-fly-star-pa-bakken-i-USA-med-tekniske-problemer-7415678.html
  322. http://www.expressen.se/res/svenskar-fast-i-florida-kan-missa-jul-i-sverige/
  323. http://www.indiatvnews.com/news/india/air-india-boeing-dreamliner-window-shield-cracks-before-landing--30022.html
  324. http://finance.yahoo.com/news/boeing-ge-notify-airlines-engine-094401702.html
  325. http://www.businessweek.com/articles/2014-01-22/why-is-the-787-dreamliner-such-a-hassle-for-norwegian-air
  326. http://www.dailymail.co.uk/news/article-2543954/Dreamliner-grounded-passengers-film-fuel-pouring-wing-Bangkok.html
  327. http://www.upi.com/Top_News/World-News/2014/01/21/Passengers-alert-planes-cabin-crew-to-fuel-leaking-from-wing/UPI-43731390321026/?spt=rln&or=1
  328. http://www.reuters.com/article/2014/01/22/boeing787-norwegian-idUSL2N0KW02320140122
  329. http://www.businessweek.com/articles/2014-01-22/why-is-the-787-dreamliner-such-a-hassle-for-norwegian-air
  330. http://www.reuters.com/article/2014/01/24/us-boeing-dreamliner-idUSBREA0N0F320140124
  331. http://seattletimes.com/html/businesstechnology/2022745412_boeingdreamlinerxml.html
  332. Wyndham, David (October 2012). "Aircraft Reliability". AvBuyer. World Aviation Communication Ltd. Retrieved 23 January 2014. 
  333. "LanChile Adds Three Boeing 767-300 Freighters To Its Fleet". Boeing. December 2000. Retrieved 23 January 2014. 
  334. 335.0 335.1 "Accident: ANA B788 near Takamatsu on Jan 16th 2013, battery problem and burning smell on board". Aviation Herald. Retrieved February 8, 2013. 
  335. "Japanese airlines ground Boeing 787s after emergency landing". Reuters. January 16, 2013. Retrieved January 16, 2013. 
  336. "787 emergency landing: Japan grounds entire Boeing Dreamliner fleet". The Guardian. January 16, 2013. Retrieved January 16, 2013. 
  337. "Boeing Dreamliners grounded worldwide on battery checks". Reuters. January 17, 2013. Retrieved January 21, 2013. 
  338. Cooper, Chris; Matsuda, Kiyotaka (May 1, 2013). "Boeing Dreamliner Grounding Hurts ANA, Japan Airlines Sales". Bloomberg (Tokyo). Retrieved May 27, 2013. 
  339. "Press Release". Federal Aviation Administration. January 16, 2013. Retrieved January 17, 2013. 
  340. 341.0 341.1 "Dreamliner: Boeing 787 planes grounded on safety fears". News. BBC. Retrieved January 17, 2013. 
  341. "Airbus CEO 'Confident' Boeing Will Find Fix for 787" (video). Bloomberg. January 17, 2013. 
  342. Wall, Robert; Rothman, Andrea (January 17, 2013). "Airbus Says A350 Design Is ‘Lower Risk’ Than Troubled 787". Bloomberg. Retrieved January 17, 2013. "‘I don’t believe that anyone’s going to switch from one airplane type to another because there’s a maintenance issue,’ Leahy said. ‘Boeing will get this sorted out.’" 
  343. "'Big Cost' Seen for Boeing Dreamliner Grounding". Bloomberg. January 17, 2013. 
  344. White, Martha C (January 17, 2013). "Is the Dreamliner Becoming a Financial Nightmare for Boeing?". TIME magazine. 
  345. Dudley, Brier (January 17, 2013). "Lithium-ion batteries pack a lot of energy — and challenges". The Seattle Times. Retrieved January 24, 2013. "iron phosphate “has been known to sort of be safer.”" 
  346. "Energy storage technologies - Lithium". Securaplane. Retrieved January 24, 2013. 
  347. "Special Conditions: Boeing Model 787– 8 Airplane; Lithium Ion Battery Installation" (PDF). FAA / Federal Register. October 11, 2007. Retrieved January 30, 2013. "NM375 Special Conditions No. 25–359–SC" 
  348. Scott, Alwyn; Saito, Mari. "FAA approval of Boeing 787 battery under scrutiny". NBC News. Reuters. Retrieved January 24, 2013. 
  349. Supko; Iverson (2011). "Li battery UN test report applicability" (PDF). NextGov. Retrieved January 23, 2013. 
  350. Nantel, Kelly (January 20, 2013). "NTSB Provides Third Investigative Update on Boeing 787 Battery Fire in Boston". NTSB. Retrieved January 21, 2013. 
  351. "Press Release". NTSB. January 26, 2013. Retrieved January 24, 2013. 
  352. Weld, Matthew; Mouwad, Jad (January 25, 2013). "Protracted Fire Inquiry Keeping 787 on Ground". The New York Times. Retrieved January 26, 2013. 
  353. Mitra-Thakur, Sofia (January 23, 2013). "Japan says 787 battery was not overcharged". Engineering & Technology. Retrieved January 23, 2013. 
  354. 355.0 355.1 Drew, Christopher; Tabuchi, Hiroko; Mouawad, Jad (January 29, 2013). "Boeing 787 Battery Was a Concern Before Failure". The New York Times. Retrieved January 30, 2013. 
  355. Hradecky, Simon (February 5, 2013). "ANA B788 near Takamatsu on Jan 16th 2013, battery problem and burning smell on board". Aviation Herald. Retrieved February 6, 2013. 
  356. Tabuchi, Hiroko (January 28, 2013). "No Quality Problems Found at Battery Maker for 787". The New York Times. Retrieved January 30, 2013. 
  357. Cooper, Chris; Matsuda, Kiyotaka (January 28, 2013). "GS Yuasa Shares Surge as Japan Ends Company Inspections". BusinessWeek. Retrieved January 29, 2013. 
  358. Knudson, Peter (January 29, 2013). "NTSB issues sixth update on JAL Boeing 787 battery fire investigation". NTSB. Retrieved January 29, 2013. 
  359. "FAA grounding all Boeing 787s". KIRO TV. Retrieved January 16, 2013. 
  360. "LAN suspende de forma temporal la operación de flota Boeing 787 Dreamliner". La Tercera. January 16, 2013. Retrieved January 16, 2013. 
  361. "European safety agency to ground 787 in line with FAA". Reuters. January 16, 2013. Retrieved January 17, 2013. 
  362. "Qatar Airways grounds Boeing Dreamliner fleet". Reuters. January 17, 2013. Retrieved January 17, 2013. 
  363. 364.0 364.1 "U.S., others ground Boeing Dreamliner indefinitely". Reuters. January 16, 2013. Retrieved January 17, 2013. 
  364. "Boeing's 787 Dreamliner". Reuters. January 16, 2013. Retrieved January 16, 2013. 
  365. Boeing 787 Dreamliner: The impact of safety concerns. BBC News. January 17, 2013. Retrieved January 17, 2013.
  366. "Dreamliner crisis: Boeing halts 787 jet deliveries". News. UK: BBC. January 1, 1970. Retrieved January 20, 2013. 
  367. "FAA approves test flights for Boeing 787". Seatle PI. February 7, 2013. Retrieved February 7, 2013. 
  368. Norris, Guy (February 7, 2013). "FAA Gives All Clear For 787 Test Flights". Aviation Week. Retrieved February 9, 2013. 
  369. "Boeing 787's battery woes put US approval under scrutiny". Business Standard. February 22, 2013. Retrieved February 22, 2013. 
  370. Boeing 787 Battery Fire Investigative Report and Related Documents. National Transportation Safety Board. 
  371. Interim factual report (PDF). NTSB. March 7, 2013. 
  372. "NTSB Report Details: Boeing 787 Battery Fire Was Difficult to Control". Time. March 7, 2013. 
  373. "Airlines Prepare to Relaunch Their Dreamliners: ANA, Qatar, United Schedule First Flights". Frequent Business Traveler. 
  374. Yeo, Ghim-Lay (April 19, 2013). "FAA approves 787 battery changes". Flight International. Retrieved April 19, 2013. 
  375. 376.0 376.1 "Boeing 787 Dreamliner returns to service in Ethiopia flight". News (BBC). April 27, 2013. 
  376. "Boeing Fix for Battery Is Approved by FAA". The New York times. April 20, 2013. 
  377. 378.0 378.1 Gates, Dominic. "Grounding order formally lifted for Boeing 787". Seattle Times/The Columbian. Retrieved 05/01/2013. 
  378. "Japan OKs 787s to fly again". CNN. April 26, 2013. Retrieved April 26, 2013. 
  379. "Ethiopian Airlines flies first 787 Dreamliner to Kenya since grounding in January". The Washington Post. Associated Press. April 27, 2013. 
  380. "Boeing 787 aircraft grounded after battery problem in Japan". BBC News. January 14, 2014. Retrieved January 16, 2014. 
  381. "No damage to JAL 787 in battery incident". Flight International. January 15, 2013. Retrieved January 16, 2014. 
  382. http://www.theregister.co.uk/2014/01/16/us_safety_authorities_on_boeings_case_787_batteries_fail/
  383. Ostrower, John, "JAL reports malfunction in battery on Boeing 787", Wall Street Journal, January 15, 2014, p. B1.
  384. For same speed of Mach 0.85 at 35,000 ft, Boeing lists 567 mph and 913 km/h on the 747-400's technical characteristics page
  385. D6-58331, Boeing 787 Airplane Characteristics for Airport Planning (PDF). Boeing Commercial Aircraft. July 2012. p. 25. Retrieved October 10, 2012. 
  386. "Sections 2 and 3" (PDF). D6-58331, Boeing 787 Airplane Characteristics for Airport Planning. Boeing Commercial Aircraft. October 2012. Retrieved June 20, 2013. 
  387. "A Perfect 10". Boeing. Retrieved June 24, 2013. 
  388. "Boeing Twin-Aisle Development". Boeing, June 18, 2013

Bibliography

  • Norris, Guy; Wagner, Mark (2009). Boeing 787 Dreamliner. US: Zenith Press. ISBN 978-0-7603-2815-6. 

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.