Blattner's conjecture

From Wikipedia, the free encyclopedia

In mathematics, Blattner's conjecture or Blattner's formula is a description of the discrete series representations of a general semisimple group G in terms of their restricted representations to a maximal compact subgroup K (their so-called K-types). Harish-Chandra orally attributed the conjecture to Robert J Blattner, who did not publish it. It first appeared in print in Schmid (1968, theorem 2), though Okamoto & Ozeki (1967) mentioned a special case of it slightly earlier. Schmid (1972) proved Blattner's formula in some special cases, Schmid (1975a) showed that Blattner's formula gave an upper bound for the multiplicities of K-representations, Schmid (1975b) proved Blattner's conjecture for groups whose symmetric space is Hermitian, and Hecht & Schmid (1975) proved Blattner's conjecture for linear semisimple groups.

Statement

Blattner's formula says that if a discrete series representation with infinitesimal character λ is restricted to a maximal compact subgroup K, then the representation of K with highest weight μ occurs with multiplicity

\sum _{{w\in W}}\epsilon (\omega )Q(w(\mu +\rho _{c})-\lambda -\rho _{n})

where

Q is the number of ways a vector can be written as a sum of non-compact positive roots
W is the Weyl group
ρc is half the sum of the compact roots
ρn is half the sum of the non-compact roots
ε is the sign character of W.

Blattner's formula is what one gets by formally restricting the Harish-Chandra character formula for a discrete series representation to the maximal torus of a maximal compact group. The problem in proving the Blattner formula is that this only gives the character on the regular elements of the maximal torus, and one also needs to control its behavior on the singular elements. For non-discrete irreducible representations the formal restriction of Harish-Chandra's character formula need not give the decomposition under the maximal compact subgroup: for example, for the principal series representations of SL2 the character is identically zero on the non-singular elements of the maximal compact subgroup, but the representation is not zero on this subgroup. In this case the character is a distribution on the maximal compact subgroup with support on the singular elements.

References

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.