Truncated 5-cubes
5-cube |
Truncated 5-cube |
Bitruncated 5-cube | |
5-orthoplex |
Truncated 5-orthoplex |
Bitruncated 5-orthoplex | |
Orthogonal projections in BC5 Coxeter plane |
---|
In five-dimensional geometry, a truncated 5-cube is a convex uniform 5-polytope, being a truncation of the regular 5-cube.
There are four unique truncations of the 5-cube. Vertices of the truncated 5-cube are located as pairs on the edge of the 5-cube. Vertices of the bitruncated 5-cube are located on the square faces of the 5-cube. The third and fourth truncations are more easily constructed as second and first truncations of the 5-orthoplex.
Truncated 5-cube
Truncated 5-cube | |
---|---|
Type | uniform polyteron |
Schläfli symbol | t{4,3,3,3} |
Coxeter-Dynkin diagrams | |
4-faces | 42 |
Cells | 200 |
Faces | 400 |
Edges | 400 |
Vertices | 160 |
Vertex figure | Elongated tetrahedral pyramid |
Coxeter groups | BC5, [3,3,3,4] |
Properties | convex |
Alternate names
- Truncated penteract (Acronym: tan) (Jonathan Bowers)
Construction and coordinates
The truncated 5-cube may be constructed by truncating the vertices of the 5-cube at of the edge length. A regular 5-cell is formed at each truncated vertex.
The Cartesian coordinates of the vertices of a truncated 5-cube having edge length 2 are all permutations of:
Images
The truncated 5-cube is constructed by a truncation applied to the 5-cube. All edges are shortened, and two new vertices are added on each original edge.
Coxeter plane | B5 | B4 / D5 | B3 / D4 / A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [10] | [8] | [6] |
Coxeter plane | B2 | A3 | |
Graph | |||
Dihedral symmetry | [4] | [4] |
Related polytopes
The truncated 5-cube, is fourth in a sequence of truncated hypercubes:
... | |||||||
Octagon | Truncated cube | Truncated tesseract | Truncated 5-cube | Truncated 6-cube | Truncated 7-cube | Truncated 8-cube | |
Bitruncated 5-cube
Bitruncated 5-cube | |
---|---|
Type | uniform polyteron |
Schläfli symbol | 2t{4,3,3,3} |
Coxeter-Dynkin diagrams | |
4-faces | 42 |
Cells | 280 |
Faces | 720 |
Edges | 800 |
Vertices | 320 |
Vertex figure | Irr. 5-cell |
Coxeter groups | BC5, [3,3,3,4] |
Properties | convex |
Alternate names
- Bitruncated penteract (Acronym: bittin) (Jonathan Bowers)
Construction and coordinates
The bitruncated 5-cube may be constructed by bitruncating the vertices of the 5-cube at of the edge length.
The Cartesian coordinates of the vertices of a bitruncated 5-cube having edge length 2 are all permutations of:
Images
Coxeter plane | B5 | B4 / D5 | B3 / D4 / A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [10] | [8] | [6] |
Coxeter plane | B2 | A3 | |
Graph | |||
Dihedral symmetry | [4] | [4] |
Related polytopes
The bitruncated 5-cube is third in a sequence of bitruncated hypercubes:
... | ||||||
Bitruncated cube | Bitruncated tesseract | Bitruncated 5-cube | Bitruncated 6-cube | Bitruncated 7-cube | Bitruncated 8-cube | |
Related polytopes
This polytope is one of 31 uniform polytera generated from the regular 5-cube or 5-orthoplex.
β5 |
t1β5 |
t2γ5 |
t1γ5 |
γ5 |
t0,1β5 |
t0,2β5 |
t1,2β5 |
t0,3β5 |
t1,3γ5 |
t1,2γ5 |
t0,4γ5 |
t0,3γ5 |
t0,2γ5 |
t0,1γ5 |
t0,1,2β5 |
t0,1,3β5 |
t0,2,3β5 |
t1,2,3γ5 |
t0,1,4β5 |
t0,2,4γ5 |
t0,2,3γ5 |
t0,1,4γ5 |
t0,1,3γ5 |
t0,1,2γ5 |
t0,1,2,3β5 |
t0,1,2,4β5 |
t0,1,3,4γ5 |
t0,1,2,4γ5 |
t0,1,2,3γ5 |
t0,1,2,3,4γ5 |
Notes
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Richard Klitzing, 5D, uniform polytopes (polytera) o3o3o3x4x - tan, o3o3x3x4o - bittin
External links
- Weisstein, Eric W., "Hypercube", MathWorld.
- Olshevsky, George, Measure polytope at Glossary for Hyperspace.
- Polytopes of Various Dimensions
- Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | BCn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes |