Rectified 5-simplexes
5-simplex |
Rectified 5-simplex |
Birectified 5-simplex |
Orthogonal projections in A5 Coxeter plane |
---|
In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex.
There are three unique degrees of rectifications, including the zeroth, the 5-simplex itself. Vertices of the rectified 5-simplex are located at the edge-centers of the 5-simplex. Vertices of the birectified 5-simplex are located in the triangular face centers of the 5-simplex.
Rectified 5-simplex
Rectified 5-simplex Rectified hexateron (rix) | ||
---|---|---|
Type | uniform 5-polytope | |
Schläfli symbol | r{34} | |
Coxeter-Dynkin diagram | or | |
4-faces | 12 | 6 {3,3,3} 6 r{3,3,3} |
Cells | 45 | 15 {3,3} 30 r{3,3} |
Faces | 80 | 80 {3} |
Edges | 60 | |
Vertices | 15 | |
Vertex figure | {}x{3,3} | |
Coxeter group | A5, [34], order 720 | |
Dual | ||
Base point | (0,0,0,0,1,1) | |
Circumradius | 0.645497 | |
Properties | convex, isogonal isotoxal |
In five dimensional geometry, a rectified 5-simplex, is a uniform 5-polytope with 15 vertices, 60 edges, 80 triangular faces, 45 cells (15 tetrahedral, and 30 octahedral), and 12 4-faces (6 5-cell and 6 rectified 5-cells). It is also called 03,1 for its branching Coxeter-Dynkin diagram, shown as .
The rectified 5-simplex, 031, is second in a dimensional series of uniform polytopes, expressed by Coxeter as 13k series. The fifth figure is a Euclidean honeycomb, 331, and the final is a noncompact hyperbolic honeycomb, 431. Each progressive uniform polytope is constructed from the previous as its vertex figure.
n | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|
Coxeter group |
A3×A1 | A5 | D6 | E7 | = E7+ | E7++ |
Coxeter diagram |
||||||
Symmetry (order) |
[3-1,3,1] (48) |
[30,3,1] (720) |
[31,3,1] (23,040) |
[32,3,1] (2,903,040) |
[33,3,1] (∞) |
[34,3,1] (∞) |
Graph | ∞ | ∞ | ||||
Name | −131 | 031 | 131 | 231 | 331 | 431 |
Alternate names
- Rectified hexateron (Acronym: rix) (Jonathan Bowers)
Coordinates
The vertices of the rectified 5-simplex can be more simply positioned on a hyperplane in 6-space as permutations of (0,0,0,0,1,1) or (0,0,1,1,1,1). These construction can be seen as facets of the rectified 6-orthoplex or birectified 6-cube respectively.
Images
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [3] |
Stereographic projection of spherical form |
Birectified 5-simplex
Birectified 5-simplex Birectified hexateron (dot) | ||
---|---|---|
Type | uniform 5-polytope | |
Schläfli symbol | 2r{34} | |
Coxeter-Dynkin diagram | or | |
4-faces | 12 | 12 r{3,3,3} |
Cells | 60 | 30 {3,3} 30 r{3,3} |
Faces | 120 | 120 {3} |
Edges | 90 | |
Vertices | 20 | |
Vertex figure | {3}x{3} | |
Coxeter group | A5×2, [[34]], order 1440 | |
Dual | {{{dot-dual}}} | |
Base point | (0,0,0,1,1,1) | |
Circumradius | 0.866025 | |
Properties | convex, isogonal isotoxal |
The birectified 5-simplex is isotopic, with all 12 of its facets as rectified 5-cells. It has 20 vertices, 90 edges, 120 triangular faces, 60 cells (30 tetrahedral, and 30 octahedral). It is also called 02,2 for its branching Coxeter-Dynkin diagram, shown as .
Alternate names
- Birectified hexateron
- dodecateron (Acronym: dot) (For 12-facetted polyteron) (Jonathan Bowers)
Construction
The birectified 5-simplex is the intersection of two regular 5-simplices in dual configuration. As such, it is also the intersection of a 6-cube with the hyperplane that bisects the hexeract's long diagonal orthogonally. In this sense it is the 5-dimensional analog of the regular hexagon, octahedron, and bitruncated 5-cell. This characterization yields simple coordinates for the vertices of a birectified 5-cell in 6-space: the 20 distinct permutations of (1,1,1,−1,−1,−1).
The vertices of the birectified 5-simplex can also be positioned on a hyperplane in 6-space as permutations of (0,0,0,1,1,1). This construction can be seen as facets of the birectified 6-orthoplex.
Images
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [[5]]=[10] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [[3]]=[6] |
Related polytopes
k_22 polytopes
The birectified 5-simplex, 022, is second in a dimensional series of uniform polytopes, expressed by Coxeter as k22 series. The birectified 5-simplex is the vertex figure for the third, the 122. The fourth figure is a Euclidean honeycomb, 222, and the final is a noncompact hyperbolic honeycomb, 322. Each progressive uniform polytope is constructed from the previous as its vertex figure.
n | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|
Coxeter group |
A22 | A5 | E6 | =E6+ | E6++ |
Coxeter diagram |
|||||
Symmetry (order) |
[[32,2,-1]] (72) |
[[32,2,0]] (1440) |
[[32,2,1]] (103,680) |
[[32,2,2]] (∞) |
[[32,2,3]] (∞) |
Graph | ∞ | ∞ | |||
Name | −122 | 022 | 122 | 222 | 322 |
Isotopics polytopes
Dim. | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
Name | t{3} Hexagon |
r{3,3} Octahedron |
2t{3,3,3} Decachoron |
2r{3,3,3,3} Dodecateron |
3t{3,3,3,3,3} Tetradecapeton |
3r{3,3,3,3,3,3} Hexadecaexon |
4t{3,3,3,3,3,3,3} Octadecazetton |
Coxeter diagram |
|||||||
Images | |||||||
Facets | {3} | t{3,3} | r{3,3,3} | 2t{3,3,3,3} | 2r{3,3,3,3,3} | 3t{3,3,3,3,3,3} |
Related uniform 5-polytopes
This polytope is the vertex figure of the 6-demicube, and the edge figure of the uniform 231 polytope.
It is also one of 19 uniform polytera based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)
t0 |
t1 |
t2 |
t0,1 |
t0,2 |
t1,2 |
t0,3 |
t1,3 |
t0,4 |
t0,1,2 |
t0,1,3 |
t0,2,3 |
t1,2,3 |
t0,1,4 |
t0,2,4 |
t0,1,2,3 |
t0,1,2,4 |
t0,1,3,4 |
t0,1,2,3,4 |
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Richard Klitzing, 5D, uniform polytopes (polytera) o3x3o3o3o - rix, o3o3x3o3o - dot
External links
- Glossary for hyperspace, George Olshevsky.
- Polytopes of Various Dimensions, Jonathan Bowers
- Rectified uniform polytera (Rix), Jonathan Bowers
- Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | BCn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes |