Bipolar theorem

From Wikipedia, the free encyclopedia

In mathematics, the bipolar theorem is a theorem in convex analysis which provides necessary and sufficient conditions for a cone to be equal to its bipolar. The bipolar theorem can be seen as a special case of the Fenchel–Moreau theorem.[1]:76–77

Statement of theorem

For any nonempty set C\subset X in some linear space X, then the bipolar cone C^{{oo}}=(C^{o})^{o} is given by

C^{{oo}}=\operatorname {cl}(\operatorname {co}\{\lambda c:\lambda \geq 0,c\in C\})

where \operatorname {co} denotes the convex hull.[1]:54[2]

Special case

C\subset X is a nonempty closed convex cone if and only if C^{{++}}=C^{{oo}}=C when C^{{++}}=(C^{+})^{+}, where (\cdot )^{+} denotes the positive dual cone.[2][3]

Or more generally, if C is a convex cone then the bipolar cone is given by

C^{{oo}}=\operatorname {cl}C.

Relation to Fenchel–Moreau theorem

If f(x)=\delta (x|C)={\begin{cases}0&{\text{if }}x\in C\\+\infty &{\text{else}}\end{cases}} is the indicator function for a cone C. Then the convex conjugate f^{*}(x^{*})=\delta (x^{*}|C^{o})=\delta ^{*}(x^{*}|C)=\sup _{{x\in C}}\langle x^{*},x\rangle is the support function for C, and f^{{**}}(x)=\delta (x|C^{{oo}}). Therefore C=C^{{oo}} if and only if f=f^{{**}}.[1]:54[3]

References

  1. 1.0 1.1 1.2 Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN 9780387295701. 
  2. 2.0 2.1 Boyd, Stephen P.; Vandenberghe, Lieven (2004). Convex Optimization (pdf). Cambridge University Press. pp. 51–53. ISBN 9780521833783. Retrieved October 15, 2011. 
  3. 3.0 3.1 Rockafellar, R. Tyrrell (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. pp. 121–125. ISBN 9780691015866. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.