Beta-Alanine

From Wikipedia, the free encyclopedia
β-Alanine
Identifiers
CAS number 107-95-9 YesY
PubChem 239
ChemSpider 234 YesY
UNII 11P2JDE17B YesY
EC-number 203-536-5
DrugBank DB03107
KEGG D07561 YesY
ChEBI CHEBI:16958 YesY
ChEMBL CHEMBL297569 YesY
IUPHAR ligand 2365
Jmol-3D images Image 1
Properties[1][2]
Molecular formula C3H7NO2
Molar mass 89.09 g mol−1
Appearance white bipyramidal crystals
Odor odorless
Density 1.437 g/cm3 (19 °C)
Melting point 207 °C; 405 °F; 480 K (decomposes)
Solubility in water 54.5 g/100 mL
Solubility soluble in methanol. diethyl ether, acetone
log P -3.05
Acidity (pKa) 3.63
Hazards
MSDS
Main hazards Irritant
NFPA 704
1
2
0
LD50 1000 mg/kg (rat, oral)
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
Infobox references

β-Alanine (or beta-alanine) is a naturally occurring beta amino acid, which is an amino acid in which the amino group is at the β-position from the carboxylate group (i.e., two atoms away, see Figure 1). The IUPAC name for β-alanine is 3-aminopropanoic acid. Unlike its counterpart α-alanine, β-alanine has no stereocenter.

β-Alanine is not used in the biosynthesis of any major proteins or enzymes. It is formed in vivo by the degradation of dihydrouracil and carnosine. It is a component of the naturally occurring peptides carnosine and anserine and also of pantothenic acid (vitamin B5), which itself is a component of coenzyme A. Under normal conditions, β-alanine is metabolized into acetic acid.

β-Alanine is the rate-limiting precursor of carnosine, which is to say carnosine levels are limited by the amount of available β-alanine. Supplementation with β-alanine has been shown to increase the concentration of carnosine in muscles, decrease fatigue in athletes and increase total muscular work done.[3][4]

Figure 1: Comparison of β-alanine (right) with the more customary (chiral) amino acid, L-α-alanine (left)

Typically, studies have used supplementing strategies of multiple doses of 400 mg or 800 mg, administered at regular intervals for up to eight hours, over periods ranging from 4 to 10 weeks.[4][5] After a 10-week supplementing strategy, the reported increase in intramuscular carnosine content was an average of 80.1% (range 18 to 205%).[4]

A study conducted at Adams State College, Alamosa, Colorado, compared the effects of β-alanine to a placebo group in two sports: wrestling and American football. The subjects taking β-alanine achieved more desirable results on all tests compared to placebo. The wrestlers, both placebo and supplement lost weight; however, the supplement group increased lean mass by 1.1 lb., while the placebo group lost lean mass (-0.98 lb). Both American football groups gained weight; however, the supplement group gained an average 2.1 lb lean mass compared to 1.1 lb for placebo.[6]

L-Histidine, with a pKa of 6.1 is a relatively weak buffer over the physiological intramuscular pH range. However, when bound to other amino acids, this increases nearer to 6.8-7.0. In particular, when bound to β-alanine, the pKa value is 6.83,[7] making this a very efficient intramuscular buffer. Furthermore, because of the position of the beta amino group, β-alanine dipeptides are not incorporated proteins and thus can be stored at relatively high concentrations (millimolar). Occurring at 17-25 mmol/kg (dry muscle),[8] carnosine (β-alanyl-L-histidine) is an important intramuscular buffer, constituting 10-20% of the total buffering capacity in type I and II muscle fibres.

β-Alanine, provided in solution or as powder in gelatine capsules, however, causes paraesthesia when ingested in amounts above 10 mg per kg body weight (bwt).[5] This is variable between individuals. Symptoms may be experienced by some individuals as mild even at 10 mg per kg bwt, in a majority as significant at 20 mg per kg bwt, and severe at 40 mg per kg bwt.[5] However, an equivalent amount (equimolar) to 40 mg per kg bwt, ingested in the form of histidine containing dipeptides in chicken broth extract, did not cause paraesthesia.[5]

It is probable that the paraesthesia, a form of neuropathic pain, results from high peak blood-plasma concentrations of β-alanine, since greater quantities, ingested in the form of the β-alanine/histidine (or methylhistidine)-containing dipeptides (i.e., carnosine and anserine) in meat, do not cause the same symptoms. In this case the β-alanine absorption profile is flattened but sustained for a longer period of time,[5] whereas the β-alanine samples in the studies were administered as gelatine capsules containing powder. This resulted in the rapid rise of plasma concentrations, peaking within 30 to 45 minutes, and being eliminated after 90 to 120 minutes. The paraesthesia caused is no indication of efficacy, since the published studies undertaken so far have utilised doses of 400 mg or 800 mg at a time to avoid the paraesthesia. Furthermore, excretion of β-alanine in urine accounted for 0.60%(+/-0.09), 1.50%(+/-0.40), or 3.64%(+/-0.47) of the administered doses of 10, 20, or 40 mg per kg body weight,[5] indicating greater losses occurring with increasing dosage.

Even though much weaker than glycine (and, thus, with a debated role as a physiological transmitter), β-alanine is an agonist next in activity to the cognate ligand glycine itself, for strychnine-sensitive inhibitory glycine receptors (GlyRs) (the agonist order: glycine >> β-alanine > taurine >> alanine, L-serine > proline).[9]

A high-potency artificial sweetener, called suosan, is derived from beta-alanine.[10]

References

  1. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals (11th ed.), Merck, 1989, ISBN 091191028X , 196.
  2. Weast, Robert C., ed. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. p. C-83. ISBN 0-8493-0462-8. .
  3. Derave W, Ozdemir MS, Harris R, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E. (August 9, 2007). "Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters". J Appl Physiol 103 (5): 1736. doi:10.1152/japplphysiol.00397.2007. PMID 17690198. 
  4. 4.0 4.1 4.2 Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. (2007). "Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity". Amino Acids 32 (2): 225–33. doi:10.1007/s00726-006-0364-4. PMID 16868650. 
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Harris, RC; Tallon, MJ; Dunnett, M; Boobis, L; Coakley, J; Kim, HJ; Fallowfield, JL; Hill, CA et al. (2006). "The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis". Amino Acids 30 (3): 279–289. doi:10.1007/s00726-006-0299-9. PMID 16554972. 
  6. Benjamin Kern, Tracey Robinson (July 31, 2009). "Effects of beta-alanine supplementation on performance and body composition in collegiate wrestlers and American football players". Journal of the International Society of Sports Nutrition. doi:10.1186/1550-2783-6-S1-P2. 
  7. Bate-Smith, EC (1938). "The buffering of muscle in rigor: protein, phosphate and carnosine". Journal of Physiology 92 (3): 336–343. PMC 1395289. PMID 16994977. 
  8. Mannion, AF; Jakeman, PM; Dunnett, M; Harris, RC; Willan, PLT (1992). "Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans". Eur. J. Appl. Physiol 64: 47–50. doi:10.1007/BF00376439. 
  9. Encyclopedia of Life Sciences Amino Acid Neurotransmitters. Jeremy M Henley, 2001 John Wiley & Sons, Ltd. doi:10.1038/npg.els.0000010, Article Online Posting Date: April 19, 2001
  10. Aspartic acid-beta-4-nitroanilide in the ChemIDplus database

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.