Lithium iron phosphate battery

From Wikipedia, the free encyclopedia
Lithium iron phosphate battery
Specific energy 90–110 Wh/kg (320–400 J/g)
Energy density 220 Wh/L (790 kJ/L)
Specific power >300 W/kg
Energy/consumer-price 0.5–2.5 Wh/US$ (US$0.11–0.56/kJ)
Time durability >10 years
Cycle durability 2,000 cycles
Nominal cell voltage 3.2 V

The lithium iron phosphate (LiFePO
4
) battery
, also called LFP battery (with "LFP" standing for "lithium ferrophosphate"), is a type of rechargeable battery, specifically a lithium-ion battery, which uses LiFePO
4
as a cathode material. LiFePO
4
batteries have somewhat lower energy density than the more common LiCoO
2
design found in consumer electronics, but offers longer lifetimes, better power density (the rate that energy can be drawn from them) and are inherently safer. LiFePO
4
is finding a number of roles in vehicle use and backup power.

History

LiFePO
4
is a natural mineral of the olivine family. Its use as a battery electrode was first described in published literature by John Goodenough's research group at the University of Texas in 1996,[1][2] as a cathode material for rechargeable lithium batteries. Because of its low cost, non-toxicity, the natural abundance of iron, its excellent thermal stability, safety characteristics, electrochemical performance, and specific capacity (170 mA·h/g, or 610 C/g) it gained some market acceptance.[3][4]

Its key barrier to commercialization was intrinsically low electrical conductivity. This problem was overcome by reducing the particle size, coating the LiFePO
4
particles with conductive materials such as carbon, and doping[3] the result with cations of materials such as aluminium, niobium, and zirconium. This approach was developed by Yet-Ming Chiang and his coworkers at MIT. Products are now in mass production and are used in industrial products by major corporations including Black and Decker's DeWalt brand, the Fisker Karma, Daimler, Cessna and BAE Systems.[citation needed]

MIT has introduced a new coating that allows the ions to move more easily within the battery. The "Beltway Battery" utilizes a bypass system that allows the lithium-ions to enter and leave the battery at a speed great enough to fully charge a battery in under a minute. The scientists discovered that by coating lithium iron phosphate particles in a glassy material called lithium pyrophosphate, ions bypass the channels and move faster than in other batteries. Rechargeable batteries store and discharge energy as charged atoms (ions) form between two electrodes, the anode and cathode. Their charge and discharge rate are restricted by the speed with which these ions move. Such technology could reduce the weight and size of the batteries. A small prototype battery cell has been developed that can fully charge in 10 to 20 seconds, compared with six minutes for standard battery cells.[5]

Advantages and disadvantages

The LiFePO
4
battery uses a lithium-ion-derived chemistry and shares many advantages and disadvantages with other Lithium-ion battery chemistries. However, there are significant differences.

LFP chemistry offers a longer cycle life than other lithium-ion approaches.[6]

Like nickel-based rechargeable batteries (and unlike other lithium ion batteries), LiFePO4 batteries have a very constant discharge voltage. Voltage stays close to 3.2V during discharge until the battery is exhausted. This allows the battery to deliver virtually full power until it is discharged. And it can greatly simplify or even eliminate the need for voltage regulation circuitry.

Because of the nominal 3.2V output, four batteries can be placed in series for a nominal voltage of 12.8V. This comes close to the nominal voltage of six-cell lead-acid batteries. And, along with the good safety characteristics of LFP batteries, this makes LFP a good potential replacement for lead-acid batteries in many applications such as automotive and solar applications.

The use of phosphates avoids cobalt's cost and environmental concerns, particularly concerns about cobalt entering the environment through improper disposal.[6]

LiFePO
4
has higher current or peak-power ratings than LiCoO2.[7]

The energy density (energy/volume) of a new LFP battery is some 14% lower than that of a new LiCoO2 battery.[8] Also, many brands of LFPs, as well as cells within a given brand of LFP batteries, have a lower discharge rate than lead-acid or LiCoO2. Since discharge rate is a percentage of battery capacity a higher rate can be achieved by using a larger battery (more ampère-hours) if low current batteries must be used. Better yet, a high current LFP cell (which will have a higher discharge rate than a lead acid or LiCoO2 battery of the same capacity) can be used.

LiFePO
4
cells experience a slower rate of capacity loss (aka greater calendar-life) than lithium-ion battery chemistries such as LiCoO2 cobalt or LiMn2O4 manganese spinel lithium-ion polymer batteries or lithium-ion batteries.[9] After one year on the shelf, a LiFePO
4
cell typically has approximately the same energy density as a LiCoO2 Li-ion cell, because of LFP's slower decline of energy density. Thereafter, LiFePO
4
likely has a higher density.

Safety

One important advantage over other lithium-ion chemistries is thermal and chemical stability, which improves battery safety.[6] LiFePO
4
is an intrinsically safer cathode material than LiCoO2 and manganese spinel. The Fe-P-O bond is stronger than the Co-O bond, so that when abused, (short-circuited, overheated, etc.) the oxygen atoms are much harder to remove. This stabilization of the redox energies also helps fast ion migration.[citation needed]

As lithium migrates out of the cathode in a LiCoO2 cell, the CoO2 undergoes non-linear expansion that affects the structural integrity of the cell. The fully lithiated and unlithiated states of LiFePO
4
are structurally similar which means that LiFePO
4
cells are more structurally stable than LiCoO2 cells.[citation needed]

No lithium remains in the cathode of a fully charged LiFePO
4
cell—in a LiCoO2 cell, approximately 50% remains in the cathode. LiFePO
4
is highly resilient during oxygen loss, which typically results in an exothermic reaction in other lithium cells.[4]

As a result, lithium iron phosphate cells are much harder to ignite in the event of mishandling (especially during charge) although any fully charged battery can only dissipate overcharge energy as heat. Therefore, failure of the battery through misuse is still possible. It is commonly accepted that LiFePO4 battery does not decompose at high temperatures.[6] The difference between LFP and the LiPo battery cells commonly used in the aeromodeling hobby is particularly notable.[citation needed]

Specifications

  • Cell voltage
    • Min. discharge voltage = 2.8 V
    • Working voltage = 3.0 ~ 3.3 V
    • Max. charge voltage = 3.6 V
  • Volumetric energy density = 220 Wh/dm3 (790 kJ/dm3)
  • Gravimetric energy density = >90 Wh/kg[10] (>320 J/g)
  • 100% DOD cycle life (number of cycles to 80% of original capacity) = 2,000–7,000[11]
  • Cathode composition (weight)
    • 90% C-LiFePO4, grade Phos-Dev-12
    • 5% Carbon EBN-10-10 (superior graphite)
    • 5% PVDF
  • Cell Configuration
  • Experimental conditions:
    • Room temperature
    • Voltage limits: 2.0–3.65 V
    • Charge: Up to C/1 rate up to 3.6 V, then constant voltage at 3.6 V until I < C/24

Usage

Transportation

Higher discharge rates if needed for acceleration, lower weight and longer life makes this ideal for bicycles and electric cars.

This battery is used in the electric cars made by Aptera[12] and QUICC.[13]

KillaCycle, the worlds fastest electric motorcycle, uses lithium iron phosphate batteries.[14]

Roehr Motorcycle Company, uses a 5.8 kW·h capacity LFP battery pack to power its supersport electric motorcycle.[citation needed]

LFP batteries are used by electric vehicles manufacturer Smith Electric Vehicles to power its products.[citation needed]

BYD, also a car manufacturer, plans to use its lithium iron phosphate batteries to power its PHEV, the F3DM and F6DM (Dual Mode), which will be the first commercial dual-mode electric car in the world. It plans to mass-produce the cars in 2009.[15]

In May 2007 Lithium Technology Corp. announced a Lithium Iron Phosphate battery with cells large enough for use in hybrid cars, claiming they are "the largest cells of their kind in the world.".[16]

Rimac Automobili have developed an advanced LFP battery system with integrated battery management and liquid cooling systems, primarily for their Concept One electric supercar which will enter production but also for commercial availability of the battery system.

ZBoard electric skateboards use LFP batteries, offering ranges up to 20 miles.

Golfskatecaddy Golf Skate Caddy electric single person golf vehicle use LFP batteries, allowing a full 18 holes of golf.

Garden lights

LFP cells are now used in some solar powered path lights instead of NiCd. Their higher working voltage allows a single cell to drive an LED without needing a step-up circuit. And the high tolerance to modest overcharging (compared to other batteries) means that the batteries can be connected to photovoltaic cells without complex circuitry. Some models claim to be 24x brighter than baseline path lights.[citation needed]

One Laptop per Child

This type of battery technology is used on the One Laptop per Child (OLPC) project.[17] The batteries are manufactured by BYD Company of Shenzhen, China, the world's largest producer of Li-ion batteries.

OLPC uses LFP batteries in its XO laptops because they contain no toxic heavy metals in compliance with the European Union's Restriction of Hazardous Substances Directive.[18]

Other uses

Many home EV conversions use the large format versions as the car's traction pack. With the efficient power to weight ratios, high safety features and the chemistry's refusal to go into thermal runaway, there are few barriers for use by amateur home "makers".

Some electronic cigarettes use these types of batteries.

RC model cars may use these batteries, especially as RX and TX packs as a direct replacement of NiMh packs or LiPo packs without need for voltage regulator, as they provide 6.6v nominal voltage over 7.4v of LiPo packs, which is little higher and may require to be regulated down to 6.0v.

See also

References

  1. "LiFePO
    4
    : A Novel Cathode Material for Rechargeable Batteries", A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Electrochimical Society Meeting Abstracts, 96-1, May, 1996, pp 73
  2. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries", A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough, J. Electrochem. Soc., 144, 1188–1194 (1997).. doi:10.1149/1.1837571. 
  3. 3.0 3.1 "Bigger, Cheaper, Safer Batteries: New material charges up lithium-ion battery work".  sciencenews.org
  4. 4.0 4.1 Building safer Li ion batteries.  houseofbatteries.com
  5. New Battery Technology Charges in Seconds
  6. 6.0 6.1 6.2 6.3 Rechargable Lithium Batteries.  Electropaedia- Battery and Energy Technologies
  7. A Better Battery? The Lithium Ion Cell Gets Supercharged, Adam Hadhazy , Scientific American, 2009-03-11.
  8. Guo, Y.; Hu, J.; Wan, L. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. Adv Mater 2008, 20, 2878–2887
  9. A123Systems "...Current test projecting excellent calendar life: 17% impedance growth and 23% capacity loss in 15 [fifteen!] years at 100% SOC, 60 deg. C..."
  10. "Large-Format, Lithium Iron Phosphate – After Gutenberg". Jcwinnie.biz. Retrieved 2012-04-24. 
  11. http://www.a123systems.com/technology/life
  12. "Aptera unveils full specs for its flagship 2e".  www.quicc.eu
  13. "QUICC electric vehicles".  www.quicc.eu
  14. Bunch, Joey (2007-09-02). "Electric motorcycle fries gas-fired competitors". Denver Post. 
  15. China Daily 2008-12-16 08:13 "BYD zooms past Toyota, GM in electric car race"
  16. "Next Generation Battery Technology Makes Hybrid and Electric Vehicles a Reality".  lithiumtech.com
  17. Pogue, David (2007-10-04). "Laptop With a Mission Widens Its Audience". New York Times. Retrieved 2007-10-04.  LiFePO
    4
    used in OLPC nytimes.com
  18. "About the Laptop: Hardware". OLPC Foundation. 

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.