ARGUS distribution

From Wikipedia, the free encyclopedia
ARGUS
Probability density function
No image available
Cumulative distribution function
No image available
Parameters c>0 cut-off (real)
χ > 0 curvature (real)
Support x\in (0,c)\!
pdf see text
CDF see text
Mean \mu =c{\sqrt  {\pi /8}}\;{\frac  {\chi e^{{-{\frac  {\chi ^{2}}{4}}}}I_{1}({\tfrac  {\chi ^{2}}{4}})}{\Psi (\chi )}}

where I1 is the Modified Bessel function of the first kind of order 1, and \Psi (x) is given in the text.
Mode {\frac  {c}{{\sqrt  2}\chi }}{\sqrt  {(\chi ^{2}-2)+{\sqrt  {\chi ^{4}+4}}}}
Variance c^{2}\!\left(1-{\frac  {3}{\chi ^{2}}}+{\frac  {\chi \phi (\chi )}{\Psi (\chi )}}\right)-\mu ^{2}

In physics, the ARGUS distribution, named after the particle physics experiment ARGUS,[1] is the probability distribution of the reconstructed invariant mass of a decayed particle candidate in continuum background.

Definition

The probability density function of the ARGUS distribution is:

f(x;\chi ,c)={\frac  {\chi ^{3}}{{\sqrt  {2\pi }}\,\Psi (\chi )}}\ \cdot \ {\frac  {x}{c^{2}}}{\sqrt  {1-{\frac  {x^{2}}{c^{2}}}}}\ \exp {\bigg \{}-{\frac  12}\chi ^{2}{\Big (}1-{\frac  {x^{2}}{c^{2}}}{\Big )}{\bigg \}},

for 0 ≤ x < c. Here χ, and c are parameters of the distribution and

\Psi (\chi )=\Phi (\chi )-\chi \phi (\chi )-{\tfrac  {1}{2}},

and Φ(·), ϕ(·) are the cumulative distribution and probability density functions of the standard normal distribution, respectively.

Cumulative distribution function

The cdf of the ARGUS distribution is

F(x)=1-{\frac  {\Psi {\Big (}\chi {\sqrt  {1-x^{2}/c^{2}}}\,{\Big )}}{\Psi (\chi )}}.

Parameter estimation

Parameter c is assumed to be known (the speed of light), whereas χ can be estimated from the sample X1, …, Xn using the maximum likelihood approach. The estimator is a function of sample second moment, and is given as a solution to the non-linear equation

1-{\frac  {3}{\chi ^{2}}}+{\frac  {\chi \phi (\chi )}{\Psi (\chi )}}={\frac  {1}{n}}\sum _{{i=1}}^{n}{\frac  {x_{i}^{2}}{c^{2}}}.

The solution exists and is unique, provided that the right-hand side is greater than 0.4; the resulting estimator \scriptstyle {\hat  \chi } is consistent and asymptotically normal.

Generalized ARGUS distribution

Sometimes a more general form is used to describe a more peaking-like distribution:

f(x)={\frac  {2^{{-p}}\chi ^{{2(p+1)}}}{\Gamma (p+1)-\Gamma (p+1,\,{\tfrac  {1}{2}}\chi ^{2})}}\ \cdot \ {\frac  {x}{c^{2}}}{\bigg (}1-{\frac  {x^{2}}{c^{2}}}{\bigg )}^{p}\exp {\bigg \{}-{\frac  12}\chi ^{2}{\Big (}1-{\frac  {x^{2}}{c^{2}}}{\Big )}{\bigg \}},\qquad 0\leq x\leq c,

where Γ(·) is the gamma function, and Γ(·,·) is the upper incomplete gamma function.

Here parameters c, χ, p represent the cutoff, curvature, and power respectively.

mode = {\frac  {c}{{\sqrt  2}\chi }}{\sqrt  {(\chi ^{2}-2p-1)+{\sqrt  {\chi ^{2}(\chi ^{2}-4p+2)+(1+2p)^{2}}}}}

p = 0.5 gives a regular ARGUS, listed above.

References

  1. Albrecht, H. (1990). "Search for hadronic b→u decays". Physics Letters B 241 (2): 278–282. doi:10.1016/0370-2693(90)91293-K.  (More formally by the ARGUS Collaboration, H. Albrecht et al.) In this paper, the function has been defined with parameter c representing the beam energy and parameter p set to 0.5. The normalization and the parameter χ have been obtained from data.

Further reading

  • Albrecht, H. (1994). "Measurement of the polarization in the decay B → J/ψK*". Physics Letters B 340 (3): 217–220. doi:10.1016/0370-2693(94)01302-0. 
  • Pedlar, T.; Cronin-Hennessy, D.; Hietala, J.; Dobbs, S.; Metreveli, Z.; Seth, K.; Tomaradze, A.; Xiao, T.; Martin, L. (2011). "Observation of the h_{c}(1P) Using e^{+}e^{-} Collisions above the DD¯ Threshold". Physical Review Letters 107 (4). arXiv:1104.2025. Bibcode:2011PhRvL.107d1803P. doi:10.1103/PhysRevLett.107.041803. 
  • Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Y. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M. (2010). "Search for Charged Lepton Flavor Violation in Narrow Υ Decays". Physical Review Letters 104 (15). arXiv:1001.1883. Bibcode:2010PhRvL.104o1802L. doi:10.1103/PhysRevLett.104.151802. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.