hp-FEM

hp-FEM is a general version of the finite element method (FEM), a numerical method for solving partial differential equations based on piecewise-polynomial approximations that employs elements of variable size (h) and polynomial degree (p). The origins of hp-FEM date back to the pioneering work of Ivo Babuska et al. [1] who discovered that the finite element method converges exponentially fast when the mesh is refined using a suitable combination of h-refinements (dividing elements into smaller ones) and p-refinements (increasing their polynomial degree). The exponential convergence makes the method a very attractive choice compared to most other finite element methods which only converge with an algebraic rate. The exponential convergence of the hp-FEM was not only predicted theoretically but also observed by numerous independent researchers.[2] [3] [4]

Contents

Differences from standard FEM

The hp-FEM differs from the standard (lowest-order) FEM in many aspects[5].

Example: the Fichera problem

The Fichera problem (also called the Fichera corner problem) is a standard benchmark problem for adaptive FEM codes. One can use it to show the dramatic difference in the performance of standard FEM and the hp-FEM. The problem geometry is a cube with missing corner. The exact solution has a singular gradient (an analogy of infinite stress) at the center. The knowledge of the exact solution makes it possible to calculate the approximation error exactly and thus compare various numerical methods. For illustration, the problem was solved using three different versions of adaptive FEM: with linear elements, quadratic elements, and the hp-FEM.

The convergence graphs show the approximation error as a function of the number of degrees of freedom (DOF). By DOF we mean (unknown) parameters that are needed to define the approximation. The number of DOF equals the size of the stiffness matrix. The reader can see in the graphs that the convergence of the hp-FEM is much faster than the convergence of both other methods. Actually, the performance gap is so huge that the linear FEM might not converge at all in reasonable time and the quadratic FEM would need hundreds of thousands or perhaps millions of DOF to reach the accuracy that the hp-FEM attained with approximately 17,000 DOF. Obtaining very accurate results using relatively few DOF is the main strength of the hp-FEM.

Why is hp-FEM so efficient?

Smooth functions can be approximated much more efficiently using large high-order elements than small piecewise-linear ones. This is illustrated in the figure below, where a 1D Poisson equation with zero Dirichlet boundary conditions is solved on two different meshes. The exact solution is the sin function.

While the number of unknowns is the same in both cases (1 DOF), the errors in the corresponding norm are 0.68 and 0.20, respectively. This means that the quadratic approximation was roughly 3.5-times more efficient than the piecewise-linear one. When we proceed one step further and compare (a) four linear elements to (b) one quartic element (p=4), then both discrete problems will have three DOF but the quartic approximation will be approximately 40-times more efficient. When performing few more steps like this, the reader will see that the efficiency gap opens extremely fast.

On the contrary, small low-order elements can capture small-scale features such as singularities much better than large high-order ones. The hp-FEM is based on an optimal combination of these two approaches which leads to exponential convergence.

What is hp-adaptivity?

Some FEM sites describe hp-adaptivity as a combination of h-adaptivity (splitting elements in space while keeping their polynomial degree fixed) and p-adaptivity (only increasing their polynomial degree). This is not entirely accurate. The hp-adaptivity is significantly different from both h- and p-adaptivity since the hp-refinement of an element can be done in many different ways. Besides a p-refinement, the element can be subdivided in space (as in h-adaptivity), but there are many combinations for the polynomial degrees on the subelements. This is illustrated in the figure on the right. For example, if a triangular or quadrilateral element is subdivided into four subelements where the polynomial degrees are allowed to vary by at most two, then this yields 3^4 = 81 refinement candidates (not considering polynomially anisotropic candidates). Analogously, splitting a hexahedron into eight subelements and varying their polynomial degrees by at most two yields 3^8 = 6,561 refinement candidates. Clearly, standard FEM error estimates providing one constant number per element are not enough to guide automatic hp-adaptivity.

Higher-order shape functions

In standard FEM one only works with shape functions associated with grid vertices (the so-called vertex functions). In contrast to that, in the hp-FEM one moreover regards edge functions (associated with element edges), face functions (corresponding to element faces - 3D only), and bubble functions (higher-order polynomials which vanish on element boundaries). The following images show these functions (restricted to a single element):

Note: all these functions are defined in the entire element interior!

Open source hp-FEM codes

References

  1. ^ I. Babuska, B.Q. Guo: The h, p and h-p version of the finite element method: basis theory and applications, Advances in Engineering Software, Volume 15, Issue 3-4, 1992.
  2. ^ J.M. Melenk: hp-Finite Element Methods for Singular Perturbations, Springer, 2002
  3. ^ C. Schwab: p- and hp- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics, Oxford University Press, 1998
  4. ^ P. Solin: Partial Differential Equations and the Finite Element Method, J. Wiley & Sons, 2005
  5. ^ P. Solin, K. Segeth, I. Dolezel: Higher-Order Finite Element Methods, Chapman & Hall/CRC Press, 2003
  6. ^ I. Babuska, M. Griebel and J. Pitkaranta, The problem of selecting the shape functions for a p-type finite element, Internat. J. Numer. Methods Engrg. (1989), pp. 1891-1908
  7. ^ L. Demkowicz, W. Rachowicz, and Ph. Devloo: A Fully Automatic hp-Adaptivity, Journal of Scientific Computing, 17, Nos 1-3 (2002), 127-155
  8. ^ P. Solin, T. Vejchodsky: A Weak Discrete Maximum Principle for hp-FEM, J. Comput. Appl. Math. 209 (2007) 54-65
  9. ^ T. Vejchodsky, P. Solin: Discrete Maximum Principle for Higher-Order Finite Elements in 1D, Math. Comput. 76 (2007), 1833 - 1846
  10. ^ L. Demkowicz, J. Kurtz, D. Pardo, W. Rachowicz, M. Paszynski, A. Zdunek: Computing with hp-Adaptive Finite Elements, Chapman & Hall/CRC Press, 2007