Zero divisor

In abstract algebra, a nonzero element a of a ring is a left zero divisor if there exists a nonzero b such that ab = 0.[1] Similarly, a nonzero element a of a ring is a right zero divisor if there exists a nonzero c such that ca = 0. An element that is both a left and a right zero divisor is simply called a zero divisor. If multiplication in the ring is commutative, then the left and right zero divisors are the same. A nonzero element of a ring that is neither a left nor right zero divisor is called regular.

Contents

Examples

\begin{pmatrix}1&1\\
2&2\end{pmatrix}

because for instance

\begin{pmatrix}1&1\\
2&2\end{pmatrix}\cdot\begin{pmatrix}1&1\\
-1&-1\end{pmatrix}=\begin{pmatrix}-2&1\\
-2&1\end{pmatrix}\cdot\begin{pmatrix}1&1\\
2&2\end{pmatrix}=\begin{pmatrix}0&0\\
0&0\end{pmatrix}.

Continuing with this example, note that while RL is a left zero divisor ((RL)T = R(LT) is 0 because LT is), LR is not a zero divisor on either side because it is the identity.

Concretely, we can interpret additive maps from S to S as countably infinite matrices. The matrix

A = \begin{pmatrix}
0      & 1 & 0      &0&0&\\
0 & 0 & 1 &0&0&\cdots\\
0 & 0 & 0 &1&0&\\
0&0&0&0&1&\\
&&\vdots&&&\ddots
\end{pmatrix}

realizes L explicitly (just apply the matrix to a vector and see the effect is exactly a left shift) and the transpose B = AT realizes the right shift on S. That AB is the identity matrix is the same as saying LR is the identity. In particular, as matrices A is a left zero divisor but not a right zero divisor.

Properties

Left or right zero divisors can never be units, because if a is invertible and ab = 0, then 0 = a−10 = a−1ab = b.

Every nonzero idempotent element a ≠ 1 is a zero divisor, since a2 = a implies a(a − 1) = (a − 1)a = 0. Nonzero nilpotent ring elements are also trivially zero divisors.

A commutative ring with 0 ≠ 1 and without zero divisors is called an integral domain.

Zero divisors occur in the quotient ring Z/nZ if and only if n is composite. When n is prime, there are no zero divisors and this ring is, in fact, a field, as every nonzero element is a unit.

Zero divisors also occur in the sedenions, or 16-dimensional hypercomplex numbers under the Cayley–Dickson construction.

The set of zero divisors is the union of the associated prime ideals of the ring.

See also

Notes

  1. ^ See Hazewinkel et. al. (2004), p. 2.

References