Xenon tetroxide | |
---|---|
xenon tetraoxide |
|
Structure | |
Molecular shape | Tetrahedral[1] |
Dipole moment | 0 D |
Properties | |
Molecular formula | XeO4 |
Molar mass | 195.29 g mol−1 |
Appearance | Yellow solid below −36°C |
Density | ? g cm−3, solid |
Melting point |
−35.9 °C |
Boiling point |
0 °C[2] |
Thermochemistry | |
Std enthalpy of formation ΔfH |
+153.5 kcal mol−1 [3] |
Standard molar entropy S |
? J.K−1.mol−1 |
Hazards | |
EU classification | Explosive (E) |
Related compounds | |
Related compounds | Perxenic acid Xenon trioxide |
(verify) (what is: / ?) Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) |
|
Infobox references |
Xenon tetroxide is a chemical compound of xenon and oxygen with molecular formula XeO4, remarkable for being a relatively stable compound of a noble gas. It is a yellow crystalline solid that is stable below −35.9 °C; above that temperature it is very prone to explode, decomposing into xenon and oxygen (O2).[4][5]
All eight valence shell electrons of xenon are involved in the bonds with the oxygen, and the oxidation state of the xenon atom is +8. Oxygen is the only element that can bring xenon up to its highest oxidation state; even fluorine can only give XeF6.
At temperatures above −35.9 °C, xenon tetroxide is very prone to explosion, decomposing into xenon gas and oxygen with ΔH = −643 kJ/mol:
The two other short-lived xenon compounds with an oxidation state of +8 are accessible by the reaction of xenon tetroxide with xenon hexafluoride. XeO3F2 and XeO2F4 can be detected with mass spectrometry.
All syntheses start from the perxenates, which are accessible from the xenates through two methods. One is the disproportionation of xenates to perxenates and xenon:
The other is oxidation of the xenates with ozone in basic solution:
Barium perxenate is reacted with sulfuric acid and the unstable perxenic acid is dehydrated to give xenon tetroxide:
Any excess perxenic acid slowly undergoes a disproportionation reaction to xenic acid and oxygen:
|