XRCC2
DNA repair protein XRCC2 is a protein that in humans is encoded by the XRCC2 gene.[1][2][3]
This gene encodes a member of the RecA/Rad51-related protein family that participates in homologous recombination to maintain chromosome stability and repair DNA damage. This gene is involved in the repair of DNA double-strand breaks by homologous recombination and it functionally complements Chinese hamster irs1, a repair-deficient mutant that exhibits hypersensitivity to a number of different DNA-damaging agents.[3]
Interactions
XRCC2 has been shown to interact with RAD51L3,[4][5][6][7] Bloom syndrome protein[5] and RAD51C.[7][8]
References
- ^ Jones NJ, Zhao Y, Siciliano MJ, Thompson LH (Aug 1995). "Assignment of the XRCC2 human DNA repair gene to chromosome 7q36 by complementation analysis". Genomics 26 (3): 619–22. doi:10.1016/0888-7543(95)80187-Q. PMID 7607692.
- ^ Cui X, Brenneman M, Meyne J, Oshimura M, Goodwin EH, Chen DJ (Aug 1999). "The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells". Mutat Res 434 (2): 75–88. PMID 10422536.
- ^ a b "Entrez Gene: XRCC2 X-ray repair complementing defective repair in Chinese hamster cells 2". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7516.
- ^ Schild, D; Lio Y C, Collins D W, Tsomondo T, Chen D J (Jun. 2000). "Evidence for simultaneous protein interactions between human Rad51 paralogs". J. Biol. Chem. (UNITED STATES) 275 (22): 16443–9. doi:10.1074/jbc.M001473200. ISSN 0021-9258. PMID 10749867.
- ^ a b Braybrooke, Jeremy P; Li Ji-Liang, Wu Leonard, Caple Fiona, Benson Fiona E, Hickson Ian D (Nov. 2003). "Functional interaction between the Bloom's syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D)". J. Biol. Chem. (United States) 278 (48): 48357–66. doi:10.1074/jbc.M308838200. ISSN 0021-9258. PMID 12975363.
- ^ Hussain, Shobbir; Wilson James B, Medhurst Annette L, Hejna James, Witt Emily, Ananth Sahana, Davies Adelina, Masson Jean-Yves, Moses Robb, West Stephen C, de Winter Johan P, Ashworth Alan, Jones Nigel J, Mathew Christopher G (Jun. 2004). "Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways". Hum. Mol. Genet. (England) 13 (12): 1241–8. doi:10.1093/hmg/ddh135. ISSN 0964-6906. PMID 15115758.
- ^ a b Liu, Nan; Schild David, Thelen Michael P, Thompson Larry H (Feb. 2002). "Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells". Nucleic Acids Res. (England) 30 (4): 1009–15. doi:10.1093/nar/30.4.1009. PMC 100342. PMID 11842113. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=100342.
- ^ Miller, Kristi A; Yoshikawa Daniel M, McConnell Ian R, Clark Robin, Schild David, Albala Joanna S (Mar. 2002). "RAD51C interacts with RAD51B and is central to a larger protein complex in vivo exclusive of RAD51". J. Biol. Chem. (United States) 277 (10): 8406–11. doi:10.1074/jbc.M108306200. ISSN 0021-9258. PMID 11744692.
Further reading
- Thacker J, Tambini CE, Simpson PJ, et al. (1995). "Localization to chromosome 7q36.1 of the human XRCC2 gene, determining sensitivity to DNA-damaging agents.". Hum. Mol. Genet. 4 (1): 113–20. doi:10.1093/hmg/4.1.113. PMID 7711722.
- Tambini CE, George AM, Rommens JM, et al. (1997). "The XRCC2 DNA repair gene: identification of a positional candidate.". Genomics 41 (1): 84–92. doi:10.1006/geno.1997.4636. PMID 9126486.
- Cartwright R, Tambini CE, Simpson PJ, Thacker J (1998). "The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family.". Nucleic Acids Res. 26 (13): 3084–9. doi:10.1093/nar/26.13.3084. PMC 147676. PMID 9628903. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=147676.
- Liu N, Lamerdin JE, Tebbs RS, et al. (1998). "XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages.". Mol. Cell 1 (6): 783–93. doi:10.1016/S1097-2765(00)80078-7. PMID 9660962.
- Johnson RD, Liu N, Jasin M (1999). "Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination.". Nature 401 (6751): 397–9. doi:10.1038/43932. PMID 10517641.
- Schild D, Lio YC, Collins DW, et al. (2000). "Evidence for simultaneous protein interactions between human Rad51 paralogs.". J. Biol. Chem. 275 (22): 16443–9. doi:10.1074/jbc.M001473200. PMID 10749867.
- Braybrooke JP, Spink KG, Thacker J, Hickson ID (2000). "The RAD51 family member, RAD51L3, is a DNA-stimulated ATPase that forms a complex with XRCC2.". J. Biol. Chem. 275 (37): 29100–6. doi:10.1074/jbc.M002075200. PMID 10871607.
- O'Regan P, Wilson C, Townsend S, Thacker J (2001). "XRCC2 is a nuclear RAD51-like protein required for damage-dependent RAD51 focus formation without the need for ATP binding.". J. Biol. Chem. 276 (25): 22148–53. doi:10.1074/jbc.M102396200. PMID 11301337.
- Miller KA, Yoshikawa DM, McConnell IR, et al. (2002). "RAD51C interacts with RAD51B and is central to a larger protein complex in vivo exclusive of RAD51.". J. Biol. Chem. 277 (10): 8406–11. doi:10.1074/jbc.M108306200. PMID 11744692.
- Masson JY, Tarsounas MC, Stasiak AZ, et al. (2002). "Identification and purification of two distinct complexes containing the five RAD51 paralogs.". Genes Dev. 15 (24): 3296–307. doi:10.1101/gad.947001. PMC 312846. PMID 11751635. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=312846.
- Kurumizaka H, Ikawa S, Nakada M, et al. (2002). "Homologous pairing and ring and filament structure formation activities of the human Xrcc2*Rad51D complex.". J. Biol. Chem. 277 (16): 14315–20. doi:10.1074/jbc.M105719200. PMID 11834724.
- Wiese C, Collins DW, Albala JS, et al. (2002). "Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells.". Nucleic Acids Res. 30 (4): 1001–8. doi:10.1093/nar/30.4.1001. PMC 100332. PMID 11842112. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=100332.
- Liu N, Schild D, Thelen MP, Thompson LH (2002). "Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells.". Nucleic Acids Res. 30 (4): 1009–15. doi:10.1093/nar/30.4.1009. PMC 100342. PMID 11842113. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=100342.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139241.
- Braybrooke JP, Li JL, Wu L, et al. (2004). "Functional interaction between the Bloom's syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D).". J. Biol. Chem. 278 (48): 48357–66. doi:10.1074/jbc.M308838200. PMID 12975363.
- Mohindra A, Bolderson E, Stone J, et al. (2004). "A tumour-derived mutant allele of XRCC2 preferentially suppresses homologous recombination at DNA replication forks.". Hum. Mol. Genet. 13 (2): 203–12. doi:10.1093/hmg/ddh022. PMID 14645207.
- Tarsounas M, Davies AA, West SC (2004). "RAD51 localization and activation following DNA damage.". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 359 (1441): 87–93. doi:10.1098/rstb.2003.1368. PMC 1693300. PMID 15065660. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1693300.
- Hussain S, Wilson JB, Medhurst AL, et al. (2004). "Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways.". Hum. Mol. Genet. 13 (12): 1241–8. doi:10.1093/hmg/ddh135. PMID 15115758.