In mathematical physics, the WKB approximation or WKB method is a method for finding approximate solutions to linear partial differential equations with spatially varying coefficients. It is typically used for a semiclassical calculation in quantum mechanics in which the wavefunction is recast as an exponential function, semiclassically expanded, and then either the amplitude or the phase is taken to be slowly changing.
The name is an acronym for Wentzel–Kramers–Brillouin. It is also known as the LG or Liouville–Green method. Other often-used acronyms for the method include JWKB and WKBJ, where the "J" stands for Jeffreys.
Contents |
This method is named after physicists Wentzel, Kramers, and Brillouin, who all developed it in 1926. In 1923, mathematician Harold Jeffreys had developed a general method of approximating solutions to linear, second-order differential equations, which includes the Schrödinger equation. Even though the Schrödinger equation was developed two years later, Wentzel, Kramers, and Brillouin were apparently unaware of this earlier work, so Jeffreys is often neglected credit. Early texts in quantum mechanics contain any number of combinations of their initials, including WBK, BWK, WKBJ, JWKB and BWKJ.
Earlier references to the method are: Carlini in 1817, Liouville in 1837, Green in 1837, Rayleigh in 1912 and Gans in 1915. Liouville and Green may be said to have founded the method in 1837, and it is also commonly referred to as the Liouville–Green or LG method.[1] [2]
The important contribution of Jeffreys, Wentzel, Kramers and Brillouin to the method was the inclusion of the treatment of turning points, connecting the evanescent and oscillatory solutions at either side of the turning point. For example, this may occur in the Schrödinger equation, due to a potential energy hill.
Generally, WKB theory is a method for approximating the solution of a differential equation whose highest derivative is multiplied by a small parameter ε. The method of approximation is as follows:
For a differential equation
assume a solution of the form of an asymptotic series expansion
In the limit . Substitution of the above ansatz into the differential equation and canceling out the exponential terms allows one to solve for an arbitrary number of terms in the expansion. WKB theory is a special case of multiple scale analysis.[3][4][5]
Consider the second-order homogeneous linear differential equation
where . Substituting
results in the equation
To leading order (assuming, for the moment, the series will be asymptotically consistent) the above can be approximated as
In the limit , the dominant balance is given by
So δ is proportional to ε. Setting them equal and comparing powers renders
which can be recognized as the Eikonal equation, with solution
Looking at first-order powers of gives
This is the unidimensional transport equation, having the solution
where is an arbitrary constant. We now have a pair of approximations to the system (a pair because can take two signs); the first-order WKB-approximation will be a linear combination of the two:
Higher-order terms can be obtained by looking at equations for higher powers of ε. Explicitly
for . This example comes from Bender and Orszag's textbook (see references).
The asymptotic series for is usually a divergent series whose general term starts to increase after a certain value . Therefore the smallest error achieved by the WKB method is at best of the order of the last included term. For the equation
with an analytic function, the value and the magnitude of the last term can be estimated as follows (see Winitzki 2005),
where is the point at which needs to be evaluated and is the (complex) turning point where , closest to . The number can be interpreted as the number of oscillations between and the closest turning point. If is a slowly-changing function,
the number will be large, and the minimum error of the asymptotic series will be exponentially small.
The one dimensional, time-independent Schrödinger equation is
which can be rewritten as
The wavefunction can be rewritten as the exponential of another function Φ (which is closely related to the action):
so that
where indicates the derivative of with respect to x. The derivative can be separated into real and imaginary parts by introducing the real functions A and B:
The amplitude of the wavefunction is then while the phase is The real and imaginary parts of the Schrödinger equation then become
Next, the semiclassical approximation is invoked. This means that each function is expanded as a power series in . From the equations it can be seen that the power series must start with at least an order of to satisfy the real part of the equation. In order to achieve a good classical limit, it is necessary to start with as high a power of Planck's constant as possible:
To zeroth-order in this expansion, the conditions on A and B can be written:
If the amplitude varies sufficiently slowly as compared to the phase (), it follows that
which is only valid when the total energy is greater than the potential energy, as is always the case in classical motion. After the same procedure on the next order of the expansion it follows that
On the other hand, if it is the phase that varies slowly (as compared to the amplitude), () then
which is only valid when the potential energy is greater than the total energy (the regime in which quantum tunneling occurs). Finding the next order of the expansion yields
It is apparent from the denominator, that both of these approximate solutions become singular near the classical turning point where and cannot be valid. These are the approximate solutions away from the potential hill and beneath the potential hill. Away from the potential hill, the particle acts similarly to a free wave—the wave-function is oscillating. Beneath the potential hill, the particle undergoes exponential changes in amplitude.
To complete the derivation, the approximate solutions must be found everywhere and their coefficients matched to make a global approximate solution. The approximate solution near the classical turning points is yet to be found.
For a classical turning point and close to , the term can be expanded in a power series.
To first order, one finds
This differential equation is known as the Airy equation, and the solution may be written in terms of Airy functions:
This solution should connect the far away and beneath solutions. Given the 2 coefficients on one side of the classical turning point, the 2 coefficients on the other side of the classical turning point can be determined by using this local solution to connect them. Thus, a relationship between and can be found.
Fortunately the Airy functions will asymptote into sine, cosine and exponential functions in the proper limits. The relationship can be found to be as follows (often referred to as "connection formulas"):
Now the global (approximate) solutions can be constructed.