VTOL

A vertical take-off and landing (VTOL) aircraft is one that can hover, take off and land vertically. This classification includes fixed-wing aircraft as well as helicopters and other aircraft with powered rotors, such as cyclogyros/cyclocopters and tiltrotors.[1][2][3][4] Some VTOL aircraft can operate in other modes as well, such as CTOL (conventional take-off and landing), STOL (short take-off and landing), and/or STOVL (short take-off and vertical landing). Others, such as some helicopters, can only operate by VTOL, due to the aircraft lacking landing gear that can handle horizontal motion. VTOL is a subset of V/STOL (vertical and/or short take-off and landing).

Besides the ubiquitous helicopter, there are currently two types of VTOL aircraft in military service: craft using a tiltrotor, such as the Bell Boeing V-22 Osprey, and aircraft using directed jet thrust such as the Harrier family. Generally speaking, VTOL aircraft capable of V/STOL use it wherever possible, since it typically significantly increases takeoff weight, range or payload compared to pure VTOL.

Contents

Rotary wing

Helicopter

The helicopter's form of VTOL allows it to take off and land vertically, to hover, and to fly forwards, backwards, and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft would usually not be able to take off or land. The capability to efficiently hover for extended periods of time is due to the helicopter's relatively long, and hence efficient rotor blades, and allows a helicopter to accomplish tasks that fixed-wing aircraft and other forms of vertical takeoff and landing aircraft could not perform at least as well until 2011.

On the other hand, the long rotor blades restrict the maximum speed to about 250 miles per hour of at least conventional helicopters, as retreating blade stall causes lateral instability.

Tiltrotor and propeller

In addition to the helicopter, many approaches have been tried to develop practical aircraft with vertical take-off and landing capabilities. Nikola Tesla patented[5] a vertical take-off and landing vehicle concept in 1928.

In May 1951, both Lockheed and Convair were awarded contracts in the attempt to design, construct, and test two experimental VTOL fighters. Lockheed produced the XFV, and Convair producing the Convair XFY Pogo, nicknamed the "Pogo". Both experimental programs proceeded to flight status and completed test flights 1954–1955, when the contracts were cancelled.[6] Similarily, the X-13 flew a series of test flights between 1955 and 1957, but also suffered the same fate.[7]

The use of vertical fans driven by engines was investigated in the 1950s. The US built an aircraft where the jet exhaust drove the fans, while British projects not built included fans driven by mechanical drives from the jet engines.

NASA has flown other VTOL craft such as the Bell XV-15 research craft (1977), as have the Soviet Navy and Luftwaffe. Sikorsky tested an aircraft dubbed the X-Wing, which took off in the manner of a helicopter. The rotors would become stationary in mid-flight, and function as wings, providing lift in addition to the static wings. Boeing X-50 is a Canard Rotor/Wing prototype that utilizes a similar concept.

A different British VTOL project was the gyrodyne, where a rotor is powered during take-off and landing but which then freewheels during flight, with separate propulsion engines providing forward thrust. Starting with the Fairey Gyrodyne, this type of aircraft later evolved into the much larger twin-engined Fairey Rotodyne, that used tipjets to power the rotor on take-off and landing but which then used two Napier Eland turboprops driving conventional propellers mounted on substantial wings to provide propulsion, the wings serving to unload the rotor during horizontal flight. The Rotodyne was developed to combine the efficiency of a fixed-wing aircraft at cruise with the VTOL capability of a helicopter to provide short haul airliner service from city centres to airports.

The CL-84 was a Canadian V/STOL turbine tilt-wing monoplane designed and manufactured by Canadair between 1964 and 1972. The Canadian government ordered three updated CL-84s for military evaluation in 1968, designated the CL-84-1. From 1972 to 1974, this version was demonstrated and evaluated in the United States aboard the aircraft carriers USS Guam and USS Guadalcanal, and at various other centres. These trials involved military pilots from the United States, the United Kingdom and Canada. During testing, two of the CL-84s crashed due to mechanical failures, but no loss of life occurred as a result of these accidents. No production contracts resulted.[8]

Although tiltrotors such as the Focke-Achgelis Fa 269 of the mid-1940s and the Centro Técnico Aeroespacial "Convertiplano" of the 1950s reached testing or mock-up stages, the V-22 Osprey is considered the world's first production tiltrotor aircraft. It has one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. The Osprey is a multi-mission aircraft with both a vertical takeoff and landing (VTOL) and short takeoff and landing capability (STOL). It is designed to perform missions like a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft. The FAA classifies the Osprey as a model of powered lift aircraft.[9]

Jet

Compared to rotating wings, due to their high exhaust velocity, jets are comparatively inefficient in hover, but jet engines are compact and this gives advantages when much higher top speeds are needed, such as for fighters.

History

In 1947, Ryan X-13 Vertijet, a tailsitter design, was ordered by the US Navy, who then further issued a proposal in 1948 for an aircraft capable of vertical takeoff and landing (VTOL) aboard platforms mounted on the afterdecks of conventional ships. Both Convair and Lockheed competed for the contract but in 1950, the requirement was revised, with a call for a research aircraft capable of eventually evolving into a VTOL ship-based convoy escort fighter.

Another more influential early functional contribution to VTOL was Rolls-Royce's Thrust Measuring Rig ("flying bedstead") of 1953. This led to the first VTOL engines as used in the first British VTOL aircraft, the Short SC.1 (1957) which used 4 vertical lift engines with a horizontal one for forward thrust.

The Short SC.1 (Belfast, Northern Ireland) was the first British fixed-wing vertical take-off and landing (VTOL) aircraft. The SC.1 was designed to study the problems with VTOL flight and the transition to and from forward flight. The SC.1 was designed to meet a Ministry of Supply (MoS) request for tender (ER.143T) for a vertical take-off research aircraft issued in September 1953. The design was accepted by the ministry and a contract was placed for two aircraft (XG900 and XG905) to meet Specification ER.143D dated 15 October 1954. The SC.1 was also equipped with the first "fly-by-wire" control system for a VTOL aircraft. This permitted three modes of control of the aerodynamic surfaces and/or the nozzle controls

The Yakovlev Yak-38 was the Soviet Navy's VTOL aircraft for their light carriers, cargoships, and capital ships. It was developed from the Yakovlev Yak-36 experimental aircraft in the 1970s. Before the Soviet Union collapsed, a supersonic VTOL aircraft was developed as the Yak-38's successor, the Yak-141, which never went into production.[10]

In the 1960s and early 1970s, Germany planned three different VTOL aircraft. One used the F-104 as a base for research for a V/STOL aircraft. Although two models (X1 and X2) were built, the project was canceled due to high costs and political problems as well as changed needs in the Luftwaffe and NATO. The EWR VJ 101C did perform free VTOL take-offs and landings, as well as test flights beyond mach 1 in the mid- and late 60s. One of the test-aircraft is preserved in the Deutsches Museum in Munich, Germany. The others were the VFW-Fokker VAK 191B light fighter and reconnaissance aircraft, and the Dornier Do 31E-3 (troop) transport.[11]

Aircraft designed to operate in orbital environments often utilize VTOL. An example of this type of aircraft is the LLRV. Spacecraft typically operate in environments where runways or even a suitably flat surface for skids is nonexistent.[12]

The idea of using the same engine for vertical and horizontal flight by altering the path of the thrust led to the Bristol Siddeley Pegasus engine which used rotating ducts to direct thrust over a range of angles. This was developed side by side with an airframe, the Hawker P.1127, which became subsequently the Kestrel and then entered production as the Hawker Siddeley Harrier, though the supersonic Hawker Siddeley P.1154 was canceled in 1965. The French in competition with the P.1154 had developed a version of the Dassault Mirage III capable of attaining Mach 1. The Dassault Mirage IIIV achieved transition from vertical to horizontal flight in March 1966, reaching Mach 1.3 in level flight a short time later.

V/STOL

The Harrier is usually flown in STOVL mode which enables it to carry a higher fuel or weapon load over a given distance.

In V/STOL the VTOL aircraft moves horizontally along the runway before taking off using vertical thrust. This gives aerodynamic lift as well as thrust lift and permits taking off with heavier loads and is more efficient.

When landing the aircraft is much lighter due to the loss of propellant weight and a vertical landing is much easier to perform.

Now retired from British Royal Navy service, the Indian Navy operates Sea Harriers mainly from its aircraft carrier INS Viraat. The latest version of the Harrier, the BAE Harrier II is operated by the British Royal Air Force and Royal Navy. The United States Marine Corps, and the Italian and Spanish Navies use the AV-8B Harrier II, an equivalent derivative of the Harrier II. The Harrier II/AV-8 will be replaced in the air arms of the US and UK by a STOVL variant of the Lockheed Martin F-35 Lightning II.

Gallery

See also

References

Notes
  1. ^ Campbell 1962
  2. ^ Rogers 1989
  3. ^ Laskowitz, I.B. "Vertical Take-Off and Landing (VTOL) Aircraft." Annals of the New York Academy of Sciences, Vol. 107, Art.1, 25 March 1963.
  4. ^ Markman and Holder 2000
  5. ^ "U.S. Patent 1,655,113." US Patent Office. Retrieved; 10 July 2011.
  6. ^ Allen 2007, pp. 13–20.
  7. ^ "The new Vertijet's straight-up flight: X-13 takes off like a rocket, lands tailfirst." Life, 20 May 1957, pp. 136–140, 142.
  8. ^ Boniface 2000, p. 74.
  9. ^ Norton 2004, pp. 6–9, 95–96.
  10. ^ "Vertical take-off/landing aircraft: Yak-38." Yakovlev Design Bureau, 16 July 2008. Retrieved: 10 July 2011.
  11. ^ Jackson 1976, p. 143.
  12. ^ "Lunar Landing Research Vehicle." Dryden Flight Research Center. Retrieved: 10 July 2011.
Bibliography
  • Allen, Francis J. "Bolt upright: Convair's and Lockheed's VTOL fighters". Air Enthusiast (Key Publishing), Volume 127, January/February 2007. ISSN 0143-5450.
  • Boniface, Patrick. "Tilt-wing Testing". Aeroplane, Vol. 28, no. 3, March 2000, pp. 72–78.
  • Campbell, John P. Vertical Takeoff & Landing Aircraft. New York: The MacMillan Company, 1962.
  • Harding, Stephen. "Flying Jeeps: The US Army's Search for the Ultimate 'Vehicle'". Air Enthusiast, No. 73, January/February 1998, pp.10-12. Stamford, Lincs, UK: Key Publishing. ISSN 0143-5450.
  • Jackson, Paul A. German Military Aviation 1956–1976. Hinckley, Leicestershire, UK: Midland Counties Publications, 1976. ISBN 0-904597-03-2.
  • Markman, Steve and Bill Holder. Straight Up: A History of Vertical Flight. Atglen, Pennsylvania: Schiffer Publishing, 2000. ISBN 0-7643-1204-9.
  • Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Earl Shilton, Leicester, UK: Midland Publishing, 2004. ISBN 1-85780-165-2.
  • Rogers, Mike. VTOL: Military Research Aircraft. New York: Orion Books, 1989. ISBN 0-517-57684-8.
  • Büchi, Roland. Fascination Quadrocopter. Norderstedt, BoD, English Version, 2011. ISBN 3-842-36731-9

External links