Actinides | Half-life | Fission products | ||||||
---|---|---|---|---|---|---|---|---|
244Cm | 241Pu f | 250Cf | 243Cmf | 10–30 y | 137Cs | 90Sr | 85Kr | |
232U f | 238Pu | f is for fissile |
69–90 y | 151Sm nc➔ | ||||
4n | 249Cf f | 242Amf | 141–351 | No fission product has half-life 102 to 2×105 years |
||||
241Am | 251Cf f | 431–898 | ||||||
240Pu | 229Th | 246Cm | 243Am | 5–7 ky | ||||
4n | 245Cmf | 250Cm | 239Pu f | 8–24 ky | ||||
233U f | 230Th | 231Pa | 32–160 | |||||
4n+1 | 234U | 4n+3 | 211–290 | 99Tc | 126Sn | 79Se | ||
248Cm | 242Pu | 340–373 | Long-lived fission products | |||||
237Np | 4n+2 | 1–2 My | 93Zr | 135Cs nc➔ | ||||
236U | 4n+1 | 247Cmf | 6–23 My | 107Pd | 129I | |||
244Pu | 80 My | >7% | >5% | >1% | >.1% | |||
232Th | 238U | 235U f | 0.7–12 Gy | fission product yield |
Uranium (U) is a naturally occurring radioactive element that has no stable isotopes but two primordial isotopes (uranium-238 and uranium-235) that have long half-life and are found in appreciable quantity in the Earth's crust, along with the decay product uranium-234. The average atomic mass of natural uranium is 238.02891(3) u. Other isotopes such as uranium-232 have been produced in breeder reactors.
Naturally occurring uranium is composed of three major isotopes, uranium-238 (99.28% natural abundance), uranium-235 (0.71%), and uranium-234 (0.0054%). All three isotopes are radioactive, creating radioisotopes, with the most abundant and stable being uranium-238 with a half-life of 4.4683×109 years (close to the age of the Earth), uranium-235 with a half-life of 7.038×108 years, and uranium-234 with a half-life of 2.48×105 years.[1]
Uranium-238 is an α emitter, decaying through the 18-member uranium series into lead-206. The decay series of uranium-235 (historically called actino-uranium) has 15 members that ends in lead-207. The constant rates of decay in these series makes comparison of the ratios of parent to daughter elements useful in radiometric dating. Uranium-233 is made from thorium-232 by neutron bombardment.
The isotope uranium-235 is important for both nuclear reactors and nuclear weapons because it is the only isotope existing in nature to any appreciable extent that is fissile, that is, can be broken apart by thermal neutrons. The isotope uranium-238 is also important because it absorbs neutrons to produce a radioactive isotope that subsequently decays to the isotope plutonium-239, which also is fissile.
Contents |
Isotopes of uranium | |
---|---|
General | |
Name, symbol | Isotopes of uranium,232U |
Neutrons | 140 |
Protons | 92 |
Nuclide data | |
Natural abundance | syn |
Half-life | 68.9 years |
Parent isotopes | 236Pu (α) 232Np (β+) 232Pa (β−) |
Decay products | 228Th |
Actinides | Half-life | Fission products | ||||||
---|---|---|---|---|---|---|---|---|
244Cm | 241Pu f | 250Cf | 243Cmf | 10–30 y | 137Cs | 90Sr | 85Kr | |
232U f | 238Pu | f is for fissile |
69–90 y | 151Sm nc➔ | ||||
4n | 249Cf f | 242Amf | 141–351 | No fission product has half-life 102 to 2×105 years |
||||
241Am | 251Cf f | 431–898 | ||||||
240Pu | 229Th | 246Cm | 243Am | 5–7 ky | ||||
4n | 245Cmf | 250Cm | 239Pu f | 8–24 ky | ||||
233U f | 230Th | 231Pa | 32–160 | |||||
4n+1 | 234U | 4n+3 | 211–290 | 99Tc | 126Sn | 79Se | ||
248Cm | 242Pu | 340–373 | Long-lived fission products | |||||
237Np | 4n+2 | 1–2 My | 93Zr | 135Cs nc➔ | ||||
236U | 4n+1 | 247Cmf | 6–23 My | 107Pd | 129I | |||
244Pu | 80 My | >7% | >5% | >1% | >.1% | |||
232Th | 238U | 235U f | 0.7–12 Gy | fission product yield |
Uranium 232 (232
92U
140, 232
U, U-232) is an isotope of uranium. It has a half-life of 68.9 years and is a side product in the thorium cycle. It has been cited as an obstacle to nuclear proliferation using 233U as the fissile material, because the intense gamma radiation of 232U's decay products makes the 233U contaminated with it more difficult to handle.
Production of 233U (through the irradiation of 233Th) invariably produces small amounts of 232U as an impurity, because of parasitic (n,2n) reactions on uranium-233 itself, or on protactinium-233:
The decay chain of 232U quickly yields strong gamma radiation emitters:
This makes manual handling in a glove box with only light shielding (as commonly done with plutonium) too hazardous, (except possibly in a short period immediately following chemical separation of the uranium from thorium-228, radium-224, radon-220, and polonium) and instead requiring remote manipulation for fuel fabrication.
Unusually for an isotope with even mass number, 232U has a significant neutron absorption cross section for fission (thermal neutrons 75 barns (b), resonance integral 380 b) as well as for neutron capture (thermal 73 b, resonance integral 280 b).
Lighter: uranium-231 |
Isotopes of uranium is an isotope of uranium |
Heavier: uranium-233 |
Decay product of: plutonium-236 (α) neptunium-232 (β+) protactinium-232 (β−) |
Decay chain of Isotopes of uranium |
Decays to: thorium-228 (α) |
Isotopes of uranium | |
---|---|
General | |
Name, symbol | U-239,239U |
Neutrons | 147 |
Protons | 92 |
Nuclide data | |
Natural abundance | syn |
Half-life | 23.45 mins |
Decay products | 239Np |
Decay mode | Decay energy |
Beta decay 20% | 1.28 MeV |
Beta decay 80% | 1.21 MeV |
Uranium-239 is an isotope of uranium. It is usually produced by exposing 238U to neutron radiation in a nuclear reactor. 239U has a half-life of about 23.45 minutes and decays into neptunium-239 through beta decay, with a total decay energy of about 1.29 Mev.[2]. The most common gamma decay at 74.660 kev accounts for the difference in the two major channels of beta emission energy, at 1.28 and 1.21 Mev.[3]
239Np further decays to plutonium-239, in a second important step which ultimately produces fissile 239Pu (used in weapons and for nuclear power), from 238U in reactors.
Lighter: Uranium-238 |
Isotopes of uranium is an isotope of Uranium |
Heavier: Uranium-240 |
Decay product of: Protactinium-239 (β-) |
Decay chain of Isotopes of uranium |
Decays to: Neptunium-239 (β-) |
nuclide symbol |
historic name |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[4][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|---|
excitation energy | ||||||||||
217U | 92 | 125 | 217.02437(9) | 26(14) ms [16(+21-6) ms] |
1/2-# | |||||
218U | 92 | 126 | 218.02354(3) | 6(5) ms | α | 214Th | 0+ | |||
219U | 92 | 127 | 219.02492(6) | 55(25) ms [42(+34-13) ms] |
α | 215Th | 9/2+# | |||
220U | 92 | 128 | 220.02472(22)# | 60# ns | α | 216Th | 0+ | |||
β+ (rare) | 220Pa | |||||||||
221U | 92 | 129 | 221.02640(11)# | 700# ns | α | 217Th | 9/2+# | |||
β+ (rare) | 221Pa | |||||||||
222U | 92 | 130 | 222.02609(11)# | 1.4(7) ms [1.0(+10-4) ms] |
α | 218Th | 0+ | |||
β+ (10−6%) | 222Pa | |||||||||
223U | 92 | 131 | 223.02774(8) | 21(8) ms [18(+10-5) ms] |
α | 219Th | 7/2+# | |||
224U | 92 | 132 | 224.027605(27) | 940(270) ms | α | 220Th | 0+ | |||
225U | 92 | 133 | 225.02939# | 61(4) ms | α | 221Th | (5/2+)# | |||
226U | 92 | 134 | 226.029339(14) | 269(6) ms | α | 222Th | 0+ | |||
227U | 92 | 135 | 227.031156(18) | 1.1(1) min | α | 223Th | (3/2+) | |||
β+ (.001%) | 227Pa | |||||||||
228U | 92 | 136 | 228.031374(16) | 9.1(2) min | α (95%) | 224Th | 0+ | |||
EC (5%) | 228Pa | |||||||||
229U | 92 | 137 | 229.033506(6) | 58(3) min | β+ (80%) | 229Pa | (3/2+) | |||
α (20%) | 225Th | |||||||||
230U | 92 | 138 | 230.033940(5) | 20.8 d | α | 226Th | 0+ | |||
SF (1.4×10−10%) | (various) | |||||||||
β+β+ (rare) | 230Th | |||||||||
231U | 92 | 139 | 231.036294(3) | 4.2(1) d | EC | 231Pa | (5/2)(+#) | |||
α (.004%) | 227Th | |||||||||
232U | 92 | 140 | 232.0371562(24) | 68.9(4) y | α | 228Th | 0+ | |||
CD (8.9×10−10%) | 208Pb 24Ne |
|||||||||
CD (5×10−12%) | 204Hg 28Mg |
|||||||||
SF (10−12%) | (various) | |||||||||
233U | 92 | 141 | 233.0396352(29) | 1.592(2)×105 y | α | 229Th | 5/2+ | |||
SF (6×10−9%) | (various) | |||||||||
CD (7.2×10−11%) | 209Pb 24Ne |
|||||||||
CD (1.3×10−13%) | 205Hg 28Mg |
|||||||||
234U[n 3][n 4] | Uranium II | 92 | 142 | 234.0409521(20) | 2.455(6)×105 y | α | 230Th | 0+ | [0.000054(5)][n 5] | 0.000050- 0.000059 |
SF (1.73×10−9%) | (various) | |||||||||
CD (1.4×10−11%) | 206Hg 28Mg |
|||||||||
CD (9×10−12%) | 184Hf 26Ne 24Ne |
|||||||||
234mU | 1421.32(10) keV | 33.5(20) ms | 6- | |||||||
235U[n 6][n 7][n 8] | Actin Uranium Actino-Uranium |
92 | 143 | 235.0439299(20) | 7.04(1)×108 y | α | 231Th | 7/2- | [0.007204(6)] | 0.007198- 0.007207 |
SF (7×10−9%) | (various) | |||||||||
CD (8×10−10%) | 186Hf 25Ne 24Ne |
|||||||||
235mU | 0.0765(4) keV | ~26 min | IT | 235U | 1/2+ | |||||
236U | 92 | 144 | 236.045568(2) | 2.342(3)×107 y | α | 232Th | 0+ | |||
SF (9.6×10−8%) | (various) | |||||||||
236m1U | 1052.89(19) keV | 100(4) ns | (4)- | |||||||
236m2U | 2750(10) keV | 120(2) ns | (0+) | |||||||
237U | 92 | 145 | 237.0487302(20) | 6.75(1) d | β- | 237Np | 1/2+ | |||
238U[n 6][n 4][n 7] | Uranium I | 92 | 146 | 238.0507882(20) | 4.468(3)×109 y | α | 234Th | 0+ | [0.992742(10)] | 0.992739- 0.992752 |
SF (5.45×10−5%) | (various) | |||||||||
β-β- (2.19×10−10%) | 238Pu | |||||||||
238mU | 2557.9(5) keV | 280(6) ns | 0+ | |||||||
239U | 92 | 147 | 239.0542933(21) | 23.45(2) min | β- | 239Np | 5/2+ | |||
239m1U | 20(20)# keV | >250 ns | (5/2+) | |||||||
239m2U | 133.7990(10) keV | 780(40) ns | 1/2+ | |||||||
240U | 92 | 148 | 240.056592(6) | 14.1(1) h | β- | 240Np | 0+ | |||
α (10−10%) | 236Th | |||||||||
241U | 92 | 149 | 241.06033(32)# | 5# min | β- | 241Np | 7/2+# | |||
242U | 92 | 150 | 242.06293(22)# | 16.8(5) min | β- | 242Np | 0+ |
Isotopes of protactinium | Isotopes of uranium | Isotopes of neptunium |
Index to isotope pages · Table of nuclides |