Triboelectric series: |
Most positively charged |
+ |
Air |
Human skin |
Leather |
Rabbit's fur |
Glass |
Quartz |
Mica |
Human hair |
Nylon |
Wool |
Lead |
Cat's fur |
Silk |
Aluminium |
Paper (Small positive charge) |
Cotton (No charge) |
0 |
Steel (No charge) |
Wood (Small negative charge) |
Lucite |
Amber |
Sealing wax |
Acrylic |
Polystyrene |
Rubber balloon |
Resins |
Hard rubber |
Nickel, Copper |
Sulfur |
Brass, Silver |
Gold, Platinum |
Acetate, Rayon |
Synthetic rubber |
Polyester |
Styrene (Styrofoam) |
Orlon |
Plastic wrap |
Polyurethane |
Polyethylene (like Scotch tape) |
Polypropylene |
Vinyl (PVC) |
Silicon |
Teflon |
Silicone rubber |
Ebonite |
− |
Most negatively charged |
The triboelectric effect (also known as triboelectric charging) is a type of contact electrification in which certain materials become electrically charged after they come into contact with another different material and are then separated (such as through rubbing). The polarity and strength of the charges produced differ according to the materials, surface roughness, temperature, strain, and other properties.
Thus, it is not very predictable, and only broad generalizations can be made. Amber, for example, can acquire an electric charge by contact and separation (or friction) with a material like wool. This property, first recorded by Thales of Miletus, suggested the word "electricity" (from William Gilbert's initial coinage, "electra"), from the Greek word for amber, ēlektron. Other examples of materials that can acquire a significant charge when rubbed together include glass rubbed with silk, and hard rubber rubbed with fur.
Contents |
Materials are often listed in order of the polarity of charge separation when they are touched with another object. A material towards the bottom of the series, when touched to a material near the top of the series, will attain a more negative charge, and vice versa. The further away two materials are from each other on the series, the greater the charge transferred. Materials near to each other on the series may not exchange any charge, or may exchange the opposite of what is implied by the list. This depends more on the presence of rubbing, the presence of contaminants or oxides, or upon properties other than on the type of material. Lists vary somewhat as to the exact order of some materials, since the charge also varies for nearby materials.
Although the word comes from the Greek for "rubbing", τρίβω (τριβή: friction), the two materials only need to come into contact and then separate for electrons to be exchanged. After coming into contact, a chemical bond is formed between some parts of the two surfaces, called adhesion, and charges move from one material to the other to equalize their electrochemical potential. This is what creates the net charge imbalance between the objects. When separated, some of the bonded atoms have a tendency to keep extra electrons, and some a tendency to give them away, though the imbalance will be partially destroyed by tunneling or electrical breakdown (usually corona discharge). In addition, some materials may exchange ions of differing mobility, or exchange charged fragments of larger molecules.
The triboelectric effect is related to friction only because they both involve adhesion. However, the effect is greatly enhanced by rubbing the materials together, as they touch and separate many times. For surfaces with differing geometry, rubbing may also lead to heating of protrusions, causing pyroelectric charge separation which may add to the existing contact electrification, or which may oppose the existing polarity. Surface nano-effects are not well understood, and the atomic force microscope has made sudden progress possible in this field of physics.
Because the surface of the material is now electrically charged, either negatively or positively, any contact with an uncharged conductive object or with an object having substantially different charge may cause an electrical discharge of the built-up static electricity; a spark. A person simply walking across a carpet (2) may build up a charge of many thousands of volts, enough to cause a spark one centimeter long or more. Low relative humidity in the ambient air increases the voltage at which electrical discharge occurs by increasing the ability of the insulating material to hold charge and by decreasing the conductivity of the air, making it difficult for the charge build-up to dissipate gradually. Simply removing a nylon shirt or corset can also create sparks. Car travel can lead to a build-up of charge on the driver and passengers due to friction between the drivers clothes and the leather or plastic furnishings inside the vehicle. This charge can then be relaxed as a spark to the metal car body, fuel dispensers or nearby door handles, etc. (3). While the car/vehicles body itself can build up a static charge (which acts as a Faraday cage) it can relax through the carbon in the tyres. If it remains charged when parked, sparks may jump from the door frame to the driver / passenger as they make contact with the ground.
This type of discharge is often harmless because the energy ((V2 * C)/2) of the spark is very small, being typically several tens of micro joules in cold dry weather, and much less than that in humid conditions. However, such sparks can ignite flammable vapours, see risks and counter-measures.
Aircraft flying in weather will develop a static charge from air friction on the airframe. The static can be discharged with static dischargers or static wicks.
NASA follows what they call the Triboelectrification Rule whereby they will cancel a launch if the launch vehicle is predicted to pass through certain types of clouds. Flying through high-level clouds can generate “P-static” (P for precipitation), which can create static around the launch vehicle that will interfere with radio signals sent by or to the vehicle. This may prevent transmitting of telemetry to the ground or, if the need arises, to send a signal to the vehicle, particularly any critical signal for the flight termination system. When a hold is put in place due to the triboelectrification rule, it remains until Space Wing and observer personnel such as those in reconnaissance aircraft indicate that the skies are clear.[1]
The effect is of considerable industrial importance in terms of both safety and potential damage to manufactured goods. Static discharge is a particular hazard in grain elevators owing to the danger of a dust explosion. The spark produced is fully able to ignite flammable vapours, for example, petrol, ether fumes as well as methane gas. For bulk fuel deliveries and aircraft fueling a grounding connection is made between the vehicle and the receiving tank prior to opening the tanks. When fueling vehicles at a retail station it is always good practice to touch both metal on the delivery nozzle and metal on the vehicle (simultaneously) before inserting the nozzle into the tank spout.
Means have to be found to discharge carts which may carry such liquids in hospitals. Even where only a small charge is produced, this can result in dust particles being attracted to the rubbed surface. In the case of textile manufacture this can lead to a permanent grimy mark where the cloth has been charged. Dust attraction may be reduced by treating insulating surfaces with an antistatic cleaning agent.
Some electronic devices, most notably CMOS integrated circuits and MOSFET transistors, can be accidentally destroyed by high-voltage static discharge. Such components are usually stored in a conductive foam for protection. Grounding oneself by touching the workbench, others, or using a special bracelet or anklet is standard practice while handling unconnected integrated circuits. Another way of dissipating charge is by using conducting materials such as carbon black loaded rubber mats in operating theatres, for example.
Devices containing sensitive components must be protected from normal use, installation, and disconnection, accomplished by designed-in protection at external connections where needed. Protection may be through the use of more robust devices or protective countermeasures at the device's external interfaces. These may be opto-isolators, less sensitive types of transistors, and static bypass devices such as metal oxide varistors.
2. - BBC News Article, 2005 - Man sets fire to office due to electrostatic discharge."Man's static jacket sparks alert" http://news.bbc.co.uk/2/hi/4252692.stm?lsm
3. - Youtube, 2009. Garage electrostatic fire. -
http://www.youtube.com/watch?v=tuZxFL9cGkI