Tractrix (from the Latin verb trahere "pull, drag"; plural: tractrices) is the curve along which a small object moves, under the influence of friction, when pulled on a horizontal plane by a piece of thread and a puller that moves at a right angle to the initial line between the object and the puller at an infinitesimal speed. It is therefore a curve of pursuit. It was first introduced by Claude Perrault in 1670, and later studied by Sir Isaac Newton (1676) and Christian Huygens (1692).
Contents |
Suppose the object is placed at (a,0) [or (4,0) in the example shown at right], and the puller in the origin, so a is the length of the pulling thread [4 in the example at right]. Then the puller starts to move along the y axis in the positive direction. At every moment, the thread will be tangent to the curve y = y(x) described by the object, so that it becomes completely determined by the movement of the puller. Mathematically, the movement will be described then by the differential equation
with the initial condition y(a) = 0 whose solution is
The first term of this solution can also be written
where arsech is the inverse hyperbolic secant function.
The negative branch denotes the case where the puller moves in the negative direction from the origin. Both branches belong to the tractrix, meeting at the cusp point (a, 0).
The essential property of the tractrix is constancy of the distance from a point P on the curve to the intersection of the asymptote and the tangent line at P.
The tractrix might be regarded in a multitude of ways:
The function admits a horizontal asymptote. The curve is symmetrical to Oy. The curvature radius is
A great implication that the tractrix had was the study of the revolution surface of it around its asymptote: the pseudosphere. Studied by Beltrami in 1868, as a surface of constant negative Gaussian curvature, the pseudosphere is a local model of non-Euclidean geometry. The idea was carried further by Kasner and Newman in their book Mathematics and the Imagination, where they show a toy train dragging a pocket watch to generate the tractrix.
In 1927, P.G.A.H. Voigt patented a horn loudspeaker design based on the assumption that a wave front traveling through the horn is spherical of a constant radius. The idea is to minimize distortion caused by internal reflection of sound within the horn. The resulting shape is the surface of revolution of a tractrix.[1]
Tractrices are also the paths that missiles and torpedoes take as they approach their respective targets.