Topoisomerases (type I: EC 5.99.1.2, type II: EC 5.99.1.3) are enzymes that regulate the overwinding or underwinding of DNA. The winding problem of DNA arises due to the intertwined nature of its double helical structure. For example, during DNA replication, DNA becomes overwound ahead of a replication fork. If left unabated, this tension would eventually grind replication to a halt (a similar event happens during transcription.)
In order to help overcome these types of topological problems caused by the double helix, topoisomerases bind to either single-stranded or double-stranded DNA and cut the phosphate backbone of the DNA. This intermediate break allows the DNA to be untangled or unwound, and, at the end of these processes, the DNA backbone is resealed again. Since the overall chemical composition and connectivity of the DNA does not change, the tangled and untangled DNAs are chemical isomers, differing only in their global topology, thus their name. Topoisomerases are isomerase enzymes that act on the topology of DNA.[1]
Contents |
The first topoisomerase, E. coli topo I, was discovered by James C. Wang.[2]
The double-helical configuration that DNA strands naturally reside makes them difficult to separate, and yet they must be separated by helicase proteins if other enzymes are to transcribe the sequences that encode proteins, or if chromosomes are to be replicated. In so-called circular DNA, in which double helical DNA is bent around and joined in a circle, the two strands are topologically linked, or knotted. Otherwise identical loops of DNA, having different numbers of twists, are topoisomers, and cannot be interconverted by any process that does not involve the breaking of DNA strands. Topoisomerases catalyze and guide the unknotting or unkinking of DNA[3] by creating transient breaks in the DNA using a conserved Tyrosine as the catalytic residue.[1]
The insertion of viral DNA into chromosomes and other forms of recombination can also require the action of topoisomerases.
Many drugs operate through interference with the topoisomerases [1]. The broad-spectrum fluoroquinolone antibiotics act by disrupting the function of bacterial type II topoisomerases. These small molecule inhibitors act as efficient anti-bacterial by hijacking the natural ability of topoisomerase to create breaks in chromosomal DNA.
Some chemotherapy drugs called topoisomerase inhibitors work by interfering with mammalian-type eukaryotic topoisomerases in cancer cells. This induces breaks in the DNA that ultimately lead to programmed cell death (apoptosis). This DNA-damaging effect, outside of its potentially curative properties, may lead to secondary neoplasms in the patient.
Topoisomerase I is the antigen recognized by Anti Scl-70 antibodies in scleroderma.
There are three main types of topology: supercoiling, knotting and catenation. Outside of the essential processes of replication or transcription, DNA must be kept as compact as possible, and these three states help this cause. However, when transcription or replication occur, DNA must be free, and these states seriously hinder the processes. In addition, during replication, the newly replicated duplex of DNA and the original duplex of DNA become intertwined and must be completely separated in order to ensure genomic integrity as a cell divides. As a transcription bubble proceeds, DNA ahead of the transcription fork becomes overwound, or positively supercoiled, while DNA behind the transcription bubble becomes underwound, or negatively supercoiled. As replication occurs, DNA ahead of the replication bubble becomes positively supercoiled, while DNA behind the replication fork becomes entangled forming precatenanes. One of the most essential topological problem occurs at the very end of replication, when daughter chromosomes must be fully disentangled before mitosis occurs. Topoisomerase IIA plays an essential role in resolving these topological problems.
Topoisomerases can fix these topological problems and are separated into two types separated by the number of strands cut in one round of action:[4] Both these classes of enzyme utilize a conserved tyrosine. However these enzymes are structurally and mechanistically different. For a video of this process see: http://www.youtube.com/watch?v=EYGrElVyHnU&feature=related.
Topoisomerase | IA | IB | IIA | IIB |
---|---|---|---|---|
Metal Dependence | Yes | No | Yes | Yes |
ATP Dependence | No | No | Yes | Yes |
Single- or Double-Stranded cleavage? | SS | SS | DS | DS |
Cleavage Polarity | 5' | 3' | 5' | 5' |
Change in L | ±1 | ±N | ±2 | ±2 |
Both type I and type II topoisomerases change the linking number (L) of DNA. Type IA topoisomerases change the linking number by one, type IB and type IC topoisomerases change the linking number by any integer, while type IIA and type IIB topoisomerases change the linking number by two.
|
|
|