Actinides | Half-life | Fission products | ||||||
---|---|---|---|---|---|---|---|---|
244Cm | 241Pu f | 250Cf | 243Cmf | 10–30 y | 137Cs | 90Sr | 85Kr | |
232U f | 238Pu | f is for fissile |
69–90 y | 151Sm nc➔ | ||||
4n | 249Cf f | 242Amf | 141–351 | No fission product has half-life 102 to 2×105 years |
||||
241Am | 251Cf f | 431–898 | ||||||
240Pu | 229Th | 246Cm | 243Am | 5–7 ky | ||||
4n | 245Cmf | 250Cm | 239Pu f | 8–24 ky | ||||
233U f | 230Th | 231Pa | 32–160 | |||||
4n+1 | 234U | 4n+3 | 211–290 | 99Tc | 126Sn | 79Se | ||
248Cm | 242Pu | 340–373 | Long-lived fission products | |||||
237Np | 4n+2 | 1–2 My | 93Zr | 135Cs nc➔ | ||||
236U | 4n+1 | 247Cmf | 6–23 My | 107Pd | 129I | |||
244Pu | 80 My | >7% | >5% | >1% | >.1% | |||
232Th | 238U | 235U f | 0.7–12 Gy | fission product yield |
Although thorium (Th) has 6 naturally occurring isotopes, none of these isotopes are stable; however, one isotope, 232Th, is relatively stable, with a half-life of 14.05 billion years, considerably longer than the age of the earth, and even slightly longer than the generally-accepted age of the universe. This isotope makes up nearly all natural thorium. As such, thorium is considered to be mononuclidic. It has a characteristic terrestrial isotopic composition and thus an atomic mass can be given.
Thirty radioisotopes have been characterized, with the most stable (after 232Th) being 230Th with a half-life of 75,380 years, 229Th with a half-life of 7,340 years, and 228Th with a half-life of 1.92 years. All of the remaining radioactive isotopes have half-lives that are less than thirty days and the majority of these have half-lives that are less than ten minutes. One isotope, 229Th, has a nuclear isomer (or metastable state) with a remarkably low excitation energy,[1] recently measured to be 7.6 ± 0.5 eV.[2]
The known isotopes of thorium range in mass number from 209[3] to 238.
Contents |
228Th is an isotope of thorium which has 138 neutrons. It was once named Radiothorium, due to its occurrence in the disintegration chain of thorium-232. It has a half-life of 1.9116 years. It undergoes alpha decay to 224Ra. Occasionally it decays by the unusual route of cluster decay, emitting a nucleus of 20O and producing stable 208Pb. It is a parent isotope of 232U
Th-228 has an atomic weight of 228.0287411 grams/mole. Uranium-232 decays to this nuclide by alpha emission.
229Th is a radioactive isotope of thorium that decays by alpha emission with a half-life of 7340 years. 229Th is produced by the decay of uranium-233, and its principal use is for the production of the medical isotopes actinium-225 and bismuth-213.[4]
Gamma ray spectroscopy has indicated that 229Th has a nuclear isomer with a remarkably low excitation energy. This would make it the lowest-energy nuclear isomer known, and it might be possible to excite this nuclear state using lasers with wavelengths in the vacuum ultraviolet.The isomer might have application for high density energy storage,[5] an accurate clock,[6] as a qubit for quantum computing, or to test the effect of the chemical environment on nuclear decay rates.[7]
The half-life of this excited state is not known, though it is estimated at 5 hours. If this isomer were to decay it would produce a gamma ray (defined by its origin not its wavelength) in the ultraviolet range. For several years, the accepted energy of the state was 3.5 eV, with an uncertainty of 1.0 eV. [8] These "ultraviolet gamma rays" were thought to have been detected at one time, but this observation has since been found to be from nitrogen gas excited by higher energy emissions.[9]
Recent measurements of higher-energy gamma rays give 7.6 eV as the energy of the 3/2+ state, with an uncertainty of 0.5 eV.[2]
230Th is a radioactive isotope of thorium which can be used to date corals and determine ocean current flux. Ionium was a name given early in the study of radioactive elements to the 230Th isotope produced in the decay chain of 238U before it was realized that ionium and thorium are chemically identical. The symbol Io was used for this supposed element.
231Th has 141 neutrons. It is the decay product of uranium-235. It is found in very small amounts on the earth and has a half-life of 25.5 hours. When it decays it emits a beta ray and forms protactinium-231. It has a decay energy of 0.39 MeV. It has a mass of 231.0363043 grams/mole.
As Thorium is mononuclidic, the main article on thorium effectively discusses this isotope.
232Th is the only primordial isotope of thorium and makes up effectively all of natural thorium, with other isotopes of thorium appearing only in trace amounts as relatively short-lived decay products of uranium and thorium.[10]
232Th decays by alpha decay with a half-life of 1.405×1010 years, over three times the age of the earth. Its decay chain is the thorium series eventually ending in lead-208. The remainder of the chain is quick; the longest half-lives in it are 5.75 years for radium-228 and 1.91 years for thorium-228, with all other half-lives totaling less than 5 days.[11]
232Th is a fertile material able to absorb a neutron and undergo transmutation into the fissile nuclide uranium-233, which is the basis of the thorium fuel cycle.[12]
In the form of Thorotrast, a thorium dioxide suspension, it was used as contrast medium in early X-ray diagnostics. Thorium-232 is now classified as carcinogenic.[13]
233Th is an isotope of thorium that decays into protactinium-233 through beta decay. It has a half-life of 21.83 minutes.[14]
234Th is an isotope of thorium whose nuclei contain 144 neutrons. Th-234 has a half-life of about 24.1 days, and when it decays, it emits a beta particle, and in so doing, it transmutes into protactinium-234. Th-234 has a mass of about 234.0436 atomic mass units (amu), and it has a decay energy of about 270 KeV (kiloelectron-volts). Uranium-238 usually decays into this isotope of thorium. (It can undergo spontaneous fission.)
nuclide symbol |
historic name |
Z(p) | N(n) | isotopic mass (u) |
half-life[n 1] | decay mode(s)[15][n 2] |
daughter isotopes(s)[n 3] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|---|
excitation energy | ||||||||||
209Th | 90 | 119 | 209.01772(11) | 7(5) ms [3.8(+69-15)] |
5/2-# | |||||
210Th | 90 | 120 | 210.015075(27) | 17(11) ms [9(+17-4) ms] |
α | 206Ra | 0+ | |||
β+ (rare) | 210Ac | |||||||||
211Th | 90 | 121 | 211.01493(8) | 48(20) ms [0.04(+3-1) s] |
α | 207Ra | 5/2-# | |||
β+ (rare) | 211Ac | |||||||||
212Th | 90 | 122 | 212.01298(2) | 36(15) ms [30(+20-10) ms] |
α (99.7%) | 208Ra | 0+ | |||
β+ (.3%) | 212Ac | |||||||||
213Th | 90 | 123 | 213.01301(8) | 140(25) ms | α | 209Ra | 5/2-# | |||
β+ (rare) | 213Ac | |||||||||
214Th | 90 | 124 | 214.011500(18) | 100(25) ms | α | 210Ra | 0+ | |||
215Th | 90 | 125 | 215.011730(29) | 1.2(2) s | α | 211Ra | (1/2-) | |||
216Th | 90 | 126 | 216.011062(14) | 26.8(3) ms | α (99.99%) | 212Ra | 0+ | |||
β+ (.006%) | 216Ac | |||||||||
216m1Th | 2042(13) keV | 137(4) µs | (8+) | |||||||
216m2Th | 2637(20) keV | 615(55) ns | (11-) | |||||||
217Th | 90 | 127 | 217.013114(22) | 240(5) µs | α | 213Ra | (9/2+) | |||
218Th | 90 | 128 | 218.013284(14) | 109(13) ns | α | 214Ra | 0+ | |||
219Th | 90 | 129 | 219.01554(5) | 1.05(3) µs | α | 215Ra | 9/2+# | |||
β+ (10−7%) | 219Ac | |||||||||
220Th | 90 | 130 | 220.015748(24) | 9.7(6) µs | α | 216Ra | 0+ | |||
EC (2×10−7%) | 220Ac | |||||||||
221Th | 90 | 131 | 221.018184(10) | 1.73(3) ms | α | 217Ra | (7/2+) | |||
222Th | 90 | 132 | 222.018468(13) | 2.237(13) ms | α | 218Ra | 0+ | |||
EC (1.3×10−8%) | 222Ac | |||||||||
223Th | 90 | 133 | 223.020811(10) | 0.60(2) s | α | 219Ra | (5/2)+ | |||
224Th | 90 | 134 | 224.021467(12) | 1.05(2) s | α | 220Ra | 0+ | |||
β+β+ (rare) | 224Ra | |||||||||
225Th | 90 | 135 | 225.023951(5) | 8.72(4) min | α (90%) | 221Ra | (3/2)+ | |||
EC (10%) | 225Ac | |||||||||
226Th | 90 | 136 | 226.024903(5) | 30.57(10) min | α | 222Ra | 0+ | |||
227Th | Radioactinium | 90 | 137 | 227.0277041(27) | 18.68(9) d | α | 223Ra | 1/2+ | Trace[n 4] | |
228Th | Radiothorium | 90 | 138 | 228.0287411(24) | 1.9116(16) a | α | 224Ra | 0+ | Trace[n 5] | |
CD (1.3×10−11%) | 208Pb 20O |
|||||||||
229Th | 90 | 139 | 229.031762(3) | 7.34(16)×103 a | α | 225Ra | 5/2+ | |||
229mTh | 0.0076(5) keV | 70(50) h | IT | 229Th | 3/2+ | |||||
230Th[n 6] | Ionium | 90 | 140 | 230.0331338(19) | 7.538(30)×104 a | α | 226Ra | 0+ | Trace[n 7] | |
CD (5.6×10−11%) | 206Hg 24Ne |
|||||||||
SF (5×10−11%) | (Various) | |||||||||
231Th | Uranium Y | 90 | 141 | 231.0363043(19) | 25.52(1) h | β- | 231Pa | 5/2+ | Trace[n 4] | |
α (10−8%) | 227Ra | |||||||||
232Th[n 8] | Thorium | 90 | 142 | 232.0380553(21) | 1.405(6)×1010 a | α | 228Ra | 0+ | 1.0000 | |
β-β- (rare) | 232U | |||||||||
SF (1.1×10−9%) | (various) | |||||||||
CD (2.78×10−10%) | 182Yb 26Ne 24Ne |
|||||||||
233Th | 90 | 143 | 233.0415818(21) | 21.83(4) min | β- | 233Pa | 1/2+ | |||
234Th | Uranium X1 | 90 | 144 | 234.043601(4) | 24.10(3) d | β- | 234mPa | 0+ | Trace[n 7] | |
235Th | 90 | 145 | 235.04751(5) | 7.2(1) min | β- | 235Pa | (1/2+)# | |||
236Th | 90 | 146 | 236.04987(21)# | 37.5(2) min | β- | 236Pa | 0+ | |||
237Th | 90 | 147 | 237.05389(39)# | 4.8(5) min | β- | 237Pa | 5/2+# | |||
238Th | 90 | 148 | 238.0565(3)# | 9.4(20) min | β- | 238Pa | 0+ |
Isotopes of actinium | Isotopes of thorium | Isotopes of protactinium |
Index to isotope pages · Table of nuclides |