Tau-function

The Ramanujan tau function, studied by Ramanujan (1916), is the function \tau:\mathbb{N}\to\mathbb{Z} defined by the following identity:

\sum_{n\geq 1}\tau(n)q^n=q\prod_{n\geq 1}(1-q^n)^{24} = \eta(z)^{24}=\Delta(z),

where q=\exp(2\pi iz) with  \Im z > 0 and \eta is the Dedekind eta function and the function \Delta(z) is a holomorphic cusp form of weight 12 and level 1, known as the discriminant modular form.

Contents

Values

The first few values of the tau function are given in the following table (sequence A000594 in OEIS):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
\tau(n) 1 −24 252 −1472 4830 −6048 −16744 84480 −113643 −115920 534612 −370944 −577738 401856 1217160 987136

Ramanujan's conjectures

Ramanujan (1916) observed, but could not prove, the following three properties of \tau(n):

The first two properties were proved by Mordell (1917) and the third one, called the Ramanujan conjecture, was proved by Deligne in 1974 as a consequence of his proof of the Weil conjectures.

Congruences for the tau function

For k ∈ Z and n ∈ Z>0, define σk(n) as the sum of the k-th powers of the divisors of n. The tau functions satisfies several congruence relations; many of them can be expressed in terms of σk(n). Here are some:[1]

  1. \tau(n)\equiv\sigma_{11}(n)\ \bmod\ 2^{11}\mbox{ for }n\equiv 1\ \bmod\ 8[2]
  2. \tau(n)\equiv 1217 \sigma_{11}(n)\ \bmod\  2^{13}\mbox{ for } n\equiv 3\ \bmod\ 8[2]
  3. \tau(n)\equiv 1537 \sigma_{11}(n)\ \bmod\ 2^{12}\mbox{ for }n\equiv 5\ \bmod\ 8[2]
  4. \tau(n)\equiv 705 \sigma_{11}(n)\ \bmod\ 2^{14}\mbox{ for }n\equiv 7\ \bmod\ 8[2]
  5. \tau(n)\equiv n^{-610}\sigma_{1231}(n)\ \bmod\ 3^{6}\mbox{ for }n\equiv 1\ \bmod\ 3[3]
  6. \tau(n)\equiv n^{-610}\sigma_{1231}(n)\ \bmod\ 3^{7}\mbox{ for }n\equiv 2\ \bmod\ 3[3]
  7. \tau(n)\equiv n^{-30}\sigma_{71}(n)\ \bmod\ 5^{3}\mbox{ for }n\not\equiv 0\ \bmod\ 5[4]
  8. \tau(n)\equiv n\sigma_{9}(n)\ \bmod\ 7\mbox{ for }n\equiv 0,1,2,4\ \bmod\ 7[5]
  9. \tau(n)\equiv n\sigma_{9}(n)\ \bmod\ 7^2\mbox{ for }n\equiv 3,5,6\ \bmod\ 7[5]
  10. \tau(n)\equiv\sigma_{11}(n)\ \bmod\ 691.[6]

For p ≠ 23 prime, we have[1][7]

  1. \tau(p)\equiv 0\ \bmod\ 23\mbox{ if }\left(\frac{p}{23}\right)=-1
  2. \tau(p)\equiv \sigma_{11}(p)\ \bmod\ 23^2\mbox{ if } p\mbox{ is of the form } a^2%2B23b^2[8]
  3. \tau(p)\equiv -1\ \bmod\ 23\mbox{ otherwise}.

Conjectures on \tau(n)

n reference
3316799 Lehmer (1947)
214928639999 Lehmer (1949)
10^{15} Serre (1973, p. 98), Serre (1985)
1213229187071998 Jennings (1993)
22689242781695999 Jordan and Kelly (1999)
22798241520242687999 Bosman (2007)

Notes

  1. ^ a b Page 4 of Swinnerton-Dyer 1973
  2. ^ a b c d Due to Kolberg 1962
  3. ^ a b Due to Ashworth 1968
  4. ^ Due to Lahivi
  5. ^ a b Due to D. H. Lehmer
  6. ^ Due to Ramanujan 1916
  7. ^ Due to Wilton 1930
  8. ^ Due to J.-P. Serre 1968, Section 4.5
  9. ^ Due to N. Lygeros and O. Rozier 2010

References