LASIK | |
---|---|
Intervention | |
LASIK IntraLase surgery at US National Naval Medical Center Bethesda |
|
ICD-9-CM | 11.71 |
MeSH | D020731 |
LASIK or Lasik (laser-assisted in situ keratomileusis), commonly referred to simply as laser eye surgery, is a type of refractive surgery for correcting myopia, hyperopia, and astigmatism. LASIK is performed by ophthalmologists using a laser.[1] This surgery reshapes corneas to sharpen vision.[2]
LASIK is similar to other surgical corrective procedures such as photorefractive keratectomy, PRK, (also called ASA, Advanced Surface Ablation) though it provides benefits such as faster patient recovery. Both LASIK and PRK represent advances over radial keratotomy in the surgical treatment of vision problems, and are thus viable alternatives to wearing corrective eyeglasses or contact lenses for many patients.[3]
Contents |
The LASIK technique was first made possible by the Colombia-based Spanish ophthalmologist Jose Barraquer, who, around 1950 in his clinic in Bogotá, Colombia, developed the first microkeratome, and developed the technique used to cut thin flaps in the cornea and alter its shape, in a procedure he called keratomileusis. Barraquer also researched the question of how much of the cornea had to be left unaltered to provide stable long-term results.
Later technical and procedural developments included RK (Radial keratotomy), developed in the USSR in the 1970s by Svyatoslav Fyodorov, and PRK (photorefractive keratectomy), developed in 1983 at Columbia University by Dr. Steven Trokel, who in addition published an article in the American Journal of Ophthalmology in 1983 outlining the potential benefits of using the excimer laser patented in 1973 by Mani Lal Bhaumik in refractive surgeries. (RK is a procedure in which radial corneal cuts are made, typically using a micrometer diamond knife, and is completely different from LASIK).
In 1968 at the Northrop Corporation Research and Technology Center of the University of California, Mani Lal Bhaumik and a group of scientists were working on the development of a carbon-dioxide laser. Their work evolved into what would become the excimer laser. This type of laser would become the cornerstone for refractive eye surgery. Dr. Bhaumik announced his team's breakthrough in May 1973 at a meeting of the Denver Optical Society of America in Denver, Colorado. He would later patent his discovery.[4]
The general term for changing a patient's optical measurements by means of an operation is Refractive Surgery. The introduction of lasers in refractive surgeries stemmed from Rangaswamy Srinivasan's work. In 1980, Srinivasan, working at IBM Research Lab, discovered that an ultraviolet excimer laser could etch living tissue in a precise manner with no thermal damage to the surrounding area. He named the phenomenon Ablative Photodecomposition (APD).[5] The use of the excimer laser to ablate corneal tissue for the correction of optical errors, such as myopia, hyperopia, and astigmatism, was first suggested by Stephen Trokel, MD, of the Edward S. Harkness Eye Institute, Columbia University, New York, NY. Dr. Trokel, along with Dr. Charles Munnerlyn and Terry Clapham, founded VISX, Incorporated. The first human eye was treated using a VISX laser system by Dr. Marguerite B. MacDonald, MD in 1989.[6]
The first patent for LASIK was granted by the U.S. Patent Office to Dr. Gholam A. Peyman on June 20, 1989, U.S. Patent #4,840,175, "method for modifying corneal curvature," encompassing the surgical procedure in which a flap is cut in the cornea and pulled back to expose the corneal bed. The exposed surface is then ablated to the desired shape with an excimer laser, after which the flap is replaced.[7]
The LASIK technique was successfully applied in other countries before it arrived to the United States. The first U.S. Food and Drug Administration (FDA) trial of the excimer laser was started in 1989. The first use of the laser was to change the surface shape of the cornea, known as PRK. Summit Technology, under the direction of its founder and CEO, Dr. David Muller, was the first company to receive FDA approval for an excimer laser to perform PRK in the US.[8] The LASIK concept was first introduced by Dr. Pallikaris in 1992 to the group of ten surgeons who were selected by the FDA to test the Visx laser at 10 centers in the U.S. In 1998, the Kremer Excimer Laser serial #KEA 940202 received FDA approval for its singular use to perform LASIK in the US.[9] Subsequently, Summit Technology was the first company in the US to receive FDA approval to mass manufacture and distribute excimer lasers to perform LASIK and Visx and several other manufactures then followed.[9]
Dr. Pallikaris theorized the benefits of performing PRK after the surface was raised in a layer to be known as a flap performed by the Mikrokeratome developed by Barraquer in 1950. The blending of a flap and PRK became known as LASIK, which is an acronym. It quickly became very popular, since it provided immediate improvements in vision and involved much less pain and discomfort than PRK.
Today, faster lasers, larger spot areas, bladeless flap incisions, intraoperative pachymetry, and wavefront-optimized and -guided techniques have significantly improved the reliability of the procedure compared to that of 1991. Nonetheless, the fundamental limitations of excimer lasers and undesirable destruction of the eye's nerves have spawned research into many alternatives to "plain" LASIK, including LASEK, Epi-LASIK, sub-Bowman’s Keratomileusis aka thin-flap LASIK, wavefront-guided PRK and modern intraocular lenses.
LASIK may one day be replaced by Femtosecond laser intrastromal vision correction via all-femtosecond correction (like Femtosecond Lenticule Extraction, FLIVC, or IntraCOR), or other techniques that avoid permanently weakening the cornea with incisions and deliver less energy to surrounding tissues. One thermobiomechanical alternative, Keraflex, recently received the CE Mark for refractive correction,[10] and is in European clinical trials for the correction of myopia and keratoconus.[11] The 20/10 (now Technolas) FEMTEC laser has also recently been used for incisionless IntraCOR ablation on several hundred human eyes and achieved very successful results for presbyopia,[12] with trials ongoing for myopia and other conditions.[13]
There are several necessary preparations in the preoperative period. The operation itself involves creating a thin flap on the eye, folding it to enable remodeling of the tissue beneath with a laser. The flap is repositioned and the eye is left to heal in the postoperative period.
Patients wearing soft contact lenses are usually instructed to stop wearing them 5 to 21 days before surgery. One industry body recommends that patients wearing hard contact lenses should stop wearing them for a minimum of six weeks plus another six weeks for every three years the hard contacts have been worn.[14] Before the surgery, the patient's corneas are examined with a pachymeter to determine their thickness, and with a topographer, or corneal topography machine,[2] to measure their surface contour. Using low-power lasers, a topographer creates a topographic map of the cornea. Some patients are unable to undergo this surgical procedure if the topographer shows problems such as keratoconus[2] This process also detects astigmatism and other irregularities in the shape of the cornea. Using this information, the surgeon calculates the amount and the locations of corneal tissue to be removed during the operation. The patient typically is prescribed and self-administers an antibiotic beforehand to minimize the risk of infection after the procedure.
The operation is performed with the patient awake and mobile; however, the patient is sometimes given a mild sedative (such as Valium) and anesthetic eye drops.
LASIK is performed in three steps. The first step is to create a flap of corneal tissue. The second step is remodeling of the cornea underneath the flap with the laser. Finally, the flap is repositioned.
A corneal suction ring is applied to the eye, holding the eye in place. This step in the procedure can sometimes cause small blood vessels to burst, resulting in bleeding or subconjunctival hemorrhage into the white (sclera) of the eye, a harmless side effect that resolves within several weeks. Increased suction typically causes a transient dimming of vision in the treated eye. Once the eye is immobilized, the flap is created. This process is achieved with a mechanical microkeratome using a metal blade, or a femtosecond laser microkeratome that creates a series of tiny closely arranged bubbles within the cornea.[15] A hinge is left at one end of this flap. The flap is folded back, revealing the stroma, the middle section of the cornea. The process of lifting and folding back the flap can sometimes be uncomfortable.
The second step of the procedure is to use an excimer laser (193 nm) to remodel the corneal stroma. The laser vaporizes tissue in a finely controlled manner without damaging the adjacent stroma. No burning with heat or actual cutting is required to ablate the tissue. The layers of tissue removed are tens of micrometres thick. Performing the laser ablation in the deeper corneal stroma typically provides for more rapid visual recovery and less pain than the earlier technique, photorefractive keratectomy (PRK).
During the second step, the patient's vision will become very blurry once the flap is lifted. They will be able to see only white light surrounding the orange light of the laser, which can lead to mild disorientation.
Currently-manufactured excimer lasers use an eye tracking system that follows the patient's eye position up to 4,000 times per second, redirecting laser pulses for precise placement within the treatment zone. Typical pulses are around 1 millijoule (mJ) of pulse energy in 10 to 20 nanoseconds.[16]
After the laser has reshaped the stromal layer, the LASIK flap is carefully repositioned over the treatment area by the surgeon and checked for the presence of air bubbles, debris, and proper fit on the eye. The flap remains in position by natural adhesion until healing is completed.
Patients are usually given a course of antibiotic and anti-inflammatory eye drops. These are continued in the weeks following surgery. Patients are usually told to sleep much more and are also given a darkened pair of shields to protect their eyes from bright lights and protective goggles to prevent rubbing of the eyes when asleep and to reduce dry eyes. They also are required to moisturize the eyes with preservative-free tears and follow directions for prescription drops. Patients should be adequately informed by their surgeons of the importance of proper post-operative care to minimize the risk of complications.
Higher-order aberrations are visual problems that cannot be diagnosed using a traditional eye exam, which tests only for acuteness of vision. Severe aberrations can cause significant vision impairment. These aberrations include starbursts, ghosting, halos, double vision, and a number of other post-operative complications.
There have always been concerns about LASIK because of its tendency to induce higher-order aberrations. The advancement of the LASIK technology has helped reduce the risk of clinically significant visual impairment after surgery. There is a correlation between pupil size and aberrations.[17] Effectively, the larger the pupil size, the greater the risk of aberrations. This correlation is the result of the irregularity between the untouched part of the cornea and the reshaped part. Daytime post-lasik vision is optimal, since the pupil is smaller than the LASIK flap. But at night, the pupil may expand such that light passes through the edge of the LASIK flap into the pupil which gives rise to many aberrations, including the appearance of halos surrounding sources of light. There are other currently unknown factors in addition to pupil size that also may lead to higher order aberrations.
In extreme cases in which ideal procedures were not followed by ophthalmologists, and before key advances, some people could suffer debilitating symptoms such as serious loss of contrast sensitivity in poor lighting situations.
Over time, most attention has shifted from other aberrations and centered on spherical aberration. LASIK and PRK tend to induce spherical aberration, because of the tendency of the laser to undercorrect as it moves outward from the center of the treatment zone. This is primarily an issue for major corrections. There are theories that posit that if the lasers were simply programmed to adjust for this tendency, no significant spherical aberration would occur. In eyes with few higher order aberrations, wavefront-optimized LASIK (rather than wavefront-guided LASIK) may well be the future.
Higher order aberrations are measured in micrometers (µm) on the wavescan taken during the pre-op examination, while the smallest beam size of lasers approved by the U.S. Food and Drug Administration is about 1000 times larger, at 0.65 mm. Thus imperfections are inherent in the procedure and a reason why patients experience halo, glare, and starburst, even with small naturally-dilated pupils in dim lighting.
Wavefront-guided LASIK[18] is a variation of LASIK surgery in which, rather than applying a simple correction of focusing power to the cornea (as in traditional LASIK), an ophthalmologist applies a spatially varying correction, guiding the computer-controlled excimer laser with measurements from a wavefront sensor. The goal is to achieve a more optically perfect eye, though the final result still depends on the physician's success at predicting changes that occur during healing. In older patients though, scattering from microscopic particles plays a major role and may outweigh any benefit from wavefront correction. Therefore, patients expecting so-called "super vision" from such procedures may be disappointed. Still, surgeons claim patients are generally more satisfied with this technique than with previous methods, particularly regarding lowered incidence of "halos," the visual artifact caused by spherical aberration induced in the eye by earlier methods. Based on their experience, the United States Air Force has described WFG-Lasik as giving "superior vision results".[19]
The surveys determining patient satisfaction with LASIK have found most patients satisfied, with satisfaction range being 92–98 percent.[20][21][22][23]
In March 2008, The American Society of Cataract and Refractive Surgery published a patient satisfaction meta-analysis of over 3,000 peer-reviewed articles from clinical journals around the world. Data from the prior 10 years revealed a 95.4 percent patient satisfaction rate among LASIK patients worldwide.[24]
The reported figures for safety and efficacy are open to interpretation. In 2003, the Medical Defence Union (MDU), the largest insurer for doctors in the United Kingdom, reported a 166 percent increase in claims involving laser eye surgery; however, the MDU averred that some of these claims resulted primarily from patients' unrealistic expectations of LASIK rather than faulty surgery.[25] A 2003 study, reported in the medical journal Ophthalmology, found that nearly 18 percent of treated patients and 12 percent of treated eyes needed retreatment.[26] The authors concluded that higher initial corrections, astigmatism, and older age are risk factors for LASIK retreatment.
In 2004, the British National Health Service's National Institute for Health and Clinical Excellence (NICE) considered a systematic review of four randomized controlled trials[27][28] before issuing guidance for the use of LASIK within the NHS.[29] Regarding the procedure's efficacy, NICE reported, "Current evidence on LASIK for the treatment of refractive errors suggests that it is effective in selected patients with mild or moderate short-sightedness," but that "evidence is weaker for its effectiveness in severe short-sightedness and long-sightedness." Regarding the procedure's safety, NICE reported that "there are concerns about the procedure's safety in the long term and current evidence does not appear adequate to support its use within the NHS without special arrangements for consent and for audit or research."
Leading refractive surgeons in the United Kingdom and United States, including at least one author of a study cited in the report, believe NICE relied on information that is severely dated and weakly researched.[30][31] Revised guidance (IPG164) was issued by NICE in March 2006 which states: "Current evidence suggests that photorefractive (laser) surgery for the correction of refractive errors is safe and efficacious for use in appropriately selected patients."[32]
On October 10, 2006, WebMD reported that statistical analysis revealed that contact lens wear infection risk is greater than the infection risk from LASIK.[33] Daily contact lens wearers have a 1-in-100 chance of developing a serious, contact lens-related eye infection in 30 years of use, and a 1-in-2,000 chance of suffering significant vision loss as a result of infection. The researchers calculated the risk of significant vision loss consequence of LASIK surgery to be closer to 1-in-10,000 cases.
On February 25, 2010, Morris Waxler, former Food and Drug Administration (FDA) official in charge of approving laser vision correction (LASIK) devices, stated concerns about the risk of serious side-effects from LASIK and the original FDA approval process. His concerns about the safety of LASIK were discussed in an interview on Good Morning America.[34]
On January 6, 2011, Waxler requested that "the Commissioner of Food and Drugs to withdraw FDA approval(PMA) for all LASIK devices and issue a Public Health Advisory with a voluntary recall of LASIK devices in an effort to stop the epidemic of permanent eye injury caused by lasers and microkeratomes used for LASIK eye surgery." Waxler alleged that "...the FDA was deprived of knowledge of the full extent of LASIK injuries prior to and during FDA reviews of documents submitted in support of the safety and effectiveness of LASIK devices under 21 CFR 812 and 21 CFR 814. In addition, LASIK manufacturers and their collaborators withheld safety and effectiveness information from their investigational device exemption (IDE) reports to the FDA. In addition, they hid LASIK injuries from FDA within the context of out-of-court settlement of innumerable lawsuits. Clinic-sponsored IDE studies cherry-picked, withheld, and hid data from FDA that clearly showed LASIK with excessive adverse event rates (greater than 1%). These activities were an industry-wide effort, organized wholly or in part by the manufacturers and their collaborators in order to circumvent FDA law and regulation. I will submit CONFIDENTIAL information on these matters separately to FDA’s Office of Criminal Investigation."[35]
Some patients with poor outcomes from LASIK surgical procedures report a significantly reduced quality of life because of vision problems or physical pain associated with the surgery. Most experienced and reputable clinics will do a full-dilation medical eye exam prior to surgery and give adequate post-operative patient education care to minimize the risk of a negative outcome. Patients who have suffered LASIK complications have created websites and discussion forums to educate the public about the risks, where prospective and past patients can discuss the surgery. In 1999, Surgical Eyes[36] was founded[37] in New York City[38] by RK patient Ron Link[39] as a resource for patients with complications of LASIK and other refractive surgeries. Surgical Eyes has now been superseded by the Vision Surgery Rehab Network (VSRN).[40] As with Surgical Eyes before it, VSRN recognizes that the vast majority of patients achieve excellent outcomes. As such, neither VSRN nor Surgical Eyes was anti-refractive surgery. No patient advocacy organization has changed its official position in regard to refractive surgery, despite the allegations of Morris Waxler, PhD concerning criminal misconduct during the approvals process.
The FDA website on LASIK states: "Before undergoing a refractive procedure, you should carefully weigh the risks and benefits based on your own personal value system, and try to avoid being influenced by friends that have had the procedure or doctors encouraging you to do so."[41] Consequently, prospective patients still need to fully understand all the potential issues and complications, as satisfaction is directly related to expectation.
The FDA received 140 "negative reports relating to LASIK" for the time period 1998–2006.[42]
The most common complaint from patients due to refractive surgery is the incidence of "dry eyes."[43] According to an American Journal of Ophthalmology study of March 2006, the incidence rate of dry eyes from LASIK after the six month post operative healing period was 36%.[44] The FDA (Food and Drugs Administration) website states that "dry eyes" may be permanent.[45]
The high incidence of dry eyes necessitates a proper preoperative and post operative evaluation and treatment for dry eyes. There are a number of successful treatments for dry eyes including artificial tears, prescription tears and punctal occlusion. Punctal occlusion is accomplished by placing a collagen plug in the natural drain of the eye. Dry eyes, if left untreated, can compromise the visual outcome and result in regression of the effect of LASIK or PRK, or in severe cases result in "chronic dry eye" where permanent chronic pain and visual impairment is a possible outcome. It also must be noted that some incidences of dry eye cannot be successfully mitigated using the above mentioned techniques, so a potential lasik patient must consider that dry eye can be a permanent outcome and untreatable.
The risk for a patient of suffering from disturbing visual side effects such as halos, double vision (ghosting), loss of contrast sensitivity (foggy vision) and glare after LASIK depends on the degree of ametropia before the laser eye surgery and other risk factors.[46] For this reason, it is important to take into account the individual risk potential of a patient and not just the average probability for all patients.[47] Aside from dry eye, the risk of flap dislocation, and other inherent risks, risk assessment involves a comparison between pre-operative and a prediction of post-operative optical aberration, which cannot be measured by a high contrast eye chart, due to the physiology of visual acuity. Post-operative optical aberration and light scattering are surgically created by both the corneal flap and laser ablation in the corneal stroma.[48]
The following are some of the more frequently reported complications of LASIK:[49][50]
Complications due to LASIK have been classified as those that occur due to preoperative, intraoperative, early postoperative, or late postoperative sources:[59]
LASIK and other forms of laser refractive surgery (i.e. PRK, LASEK and Epi-LASEK) change the dynamics of the cornea. These changes make it difficult for your optometrist and ophthalmologist to accurately measure your intraocular pressure, essential in glaucoma screening and treatment. The changes also affect the calculations used to select the correct intraocular lens implant when you have cataract surgery. This is known to ophthalmologists as "refractive surprise." The correct intraocular pressure and intraocular lens power can be calculated if you can provide your eye care professional with your preoperative, operative and postoperative eye measurements.
Although there have been improvements in LASIK technology,[74][75][76] a large body of conclusive evidence on the chances of long-term complications is not yet established. Also, there is a small chance of complications, such as haziness, halo, or glare, some of which may be irreversible because the LASIK eye surgery procedure is irreversible.
The incidence of macular hole has been estimated at 0.2 percent[58] to 0.3 percent.[77] The incidence of retinal detachment has been estimated at 0.36 percent.[77] The incidence of choroidal neovascularization has been estimated at 0.33 percent.[77] The incidence of uveitis has been estimated at 0.18 percent.[78]
Although the cornea usually is thinner after LASIK, because of the removal of part of the stroma, refractive surgeons strive to maintain the maximum thickness to avoid structurally weakening the cornea. Decreased atmospheric pressure at higher altitudes has not been demonstrated as extremely dangerous to the eyes of LASIK patients. However, some mountain climbers have experienced a myopic shift at extreme altitudes.[79][80]
In situ keratomileusis effected at a later age increases the incidence of corneal higher-order wavefront aberrations.[81][82] Conventional eyeglasses do not correct higher order aberrations.
Microfolding has been reported as "an almost unavoidable complication of LASIK" whose "clinical significance appears negligible."[64]
Blepharitis, or inflammation of the eyelids with crusting of the eyelashes, may increase the risk of infection or inflammation of the cornea after LASIK.
Myopic (nearsighted) people who are close to the age (mid- to late-forties) when they will require either reading glasses or bifocal eyeglasses may find that they still require reading glasses despite having undergone refractive LASIK surgery. Myopic people generally require reading glasses or bifocal eyeglasses at a later age than people who are emmetropic (those who see without eyeglasses), but this benefit may be lost if they undergo LASIK. This is not a complication but an expected result of the physical laws of optics. Although there is currently no method to completely eradicate the need for reading glasses in this group, it may be minimized by performing a variation of the LASIK procedure called "slight monovision." In this procedure, which is performed exactly like distance-vision-correction LASIK, the dominant eye is set for distance vision, while the non-dominant eye is set to the prescription of the patient's reading glasses. This allows the patient to achieve a similar effect as wearing bifocals. The majority of patients tolerate this procedure very well and do not notice any shift between near and distance viewing, although a small portion of the population has trouble adjusting to the monovision effect. This can be tested for several days prior to surgery by wearing contact lenses that mimic the monovision effect. Recently, a variation of the laser ablation pattern called PresbyLASIK, has been developed to reduce or eliminate dependence on reading glasses while retaining distance vision
There are reports of decrease in the number of corneal keratocytes (fibroblasts) after LASIK.[83]
Typically, the cornea is avascular because it must be transparent to function normally, and its cells absorb oxygen from the tear film. Thus, low-oxygen-permeable contact lenses reduce the cornea's oxygen absorption, sometimes resulting in corneal neovascularization—the growth of blood vessels into the cornea. This causes a slight lengthening of inflammation duration and healing time and some pain during surgery, because of greater bleeding.
Although some contact lenses (notably modern RGP and soft silicone hydrogel lenses) are made of materials with greater oxygen permeability that help reduce the risk of corneal neovascularization, patients considering LASIK are warned to avoid over-wearing their contact lenses. Usually, it is recommended that they discontinue wearing contact lenses days or weeks before the LASIK eye surgery.
New advances in eyesight corrective surgery are providing consumers greater choices. Patients in their 40s or 50s who are considering LASIK surgery to improve their vision might want to consider to be evaluated for implantable lenses as well. "Early signs of a cataract might argue for surgery and implantation of multifocal lenses instead."[84]
The FDA has approved LASIK for age 18 and over.[85] More importantly the person's eye prescription needs to be stable for at least one year prior to surgery.
|