Super Ball

A SuperBall (originally Super Ball) or bouncy ball is a toy, invented in 1964 by chemist Norman Stingley by compressing a synthetic rubber material under high pressure. It is an extremely elastic ball made of Zectron,[1] which contains the synthetic rubber polymer polybutadiene, as well as hydrated silica, zinc oxide, stearic acid, and other ingredients[2] vulcanized with sulfur at a temperature of 165 degrees Celsius and at a pressure of 80 atmospheres (1,175 psi). The Super Ball has an amazingly high coefficient of restitution.[3][4][5] Dropped from shoulder level, Super Balls snapped nearly all the way back; thrown down by an average adult, it can leap over a three-story building. Toys similar to SuperBalls are more generally known as bouncy balls, a term which covers other more or less similar balls by different manufacturers with different formulations.

Contents

History

After Stingley invented the synthetic rubber, he tried to find uses for it and someone to manufacture it. He offered his invention to the Bettis Rubber Company (for whom he worked at the time).[6] They turned it down because the material was not very durable.[7] So, he took it to the toy company Wham-O and they worked on developing a more durable version. This version is still manufactured by Wham-O.[8][9]

"It took us nearly two years to iron the kinks out of Super Ball before we produced it." according to Richard Knerr, President of Wham-O.[10] "It always had that marvelous springiness.... But it had a tendency to fly apart. We've licked that with a very high-pressure technique for forming it. Now we're selling millions." Knerr continued.[10]

When the SuperBall was first introduced, it became a fad.[11] Peak production was over 170,000 superballs per day.[12] By December 1965 over six million had been sold, and US Presidential adviser McGeorge Bundy had five dozen superballs shipped to the White House for the amusement of the staff.[1][12][13][14] Knowing that fads are often short-lived, Wham-O Executive Vice-president Richard P. Kerr said "Each Super Ball bounce is 92% as high as the last. If our sales don't come down any faster than that, we've got it made."[14] Initially the full size Super Ball sold for ninety-eight cents at retail, by the end of 1966 its colorful miniature versions sold for as little as ten cents in vending machines.[15]

In the late 1960s Wham-O made a "giant" superball, roughly the size of a bowling ball, as a promotional stunt.[8][9] It fell from the 23rd story window of an Australian hotel (or some reports say, from the roof) and destroyed a parked convertible car on the 2nd bounce.[8][9]

The composer Alcides Lanza, in his composition Plectros III (1971), specified that the performer should use a pair of Superballs on sticks as mallets with which to strike and rub the strings and case of a piano.[16] Lanza purchased several SuperBalls in 1965 as toys for his son, but soon he started experimenting with the sounds they made when rubbed along the frame or strings of a piano.[16] Several years later, Plectros III resulted.

After watching his children play with a Super Ball, Lamar Hunt, founder of the American Football League, coined the term Super Bowl. In a July 25, 1966, letter to NFL commissioner Pete Rozelle, Hunt wrote, "I have kiddingly called it the 'Super Bowl,' which obviously can be improved upon." Although the leagues' owners decided on the name "AFL-NFL Championship Game," the media immediately picked up on Hunt's "Super Bowl" name, which would become official beginning with the third annual game.[8][17][18]

Physical properties

According to one study "If a pen is stuck in a hard rubber ball and dropped from a certain height, the pen may bounce to several times that height."[19] If a superball is dropped without spin onto a hard surface, with a small ball bearing on top of the superball, the bearing rebounds to a great height.[20]

The "rough" nature of a Super Ball makes its impact characteristics different from otherwise similar smooth balls.[21][22] The resulting behavior is quite complex.[22] The superball has been used as an illustration of the principle of Time Reversal Invariance.[23]

A superball is observed to reverse the direction of spin on each bounce.[24][25][26] This effect depends on the tangential compliance and frictional effect in the collision, it cannot be explained by rigid body impact theory, and would not occur were the ball perfectly rigid.[26] (Tangential compliance is the degree to which one body clings to rather than slips over another at the point of impact.[27])

High school physics teachers use Super Balls to educate students on usual and unusual models of impacts.[28]

Patent

Further reading

References

  1. ^ a b Johnson, Richard Alan (December 1985). American Fads. William Morrow & Co. pp. 81–83. ISBN 0688049036. http://www.noframes.com/%60superballs//wham-o_superball_history.htm. Retrieved 4 February 2010. 
  2. ^ Farrally, Martin R; Cochran, Alastair J. (1998). Science and golf III: proceedings of the 1998 World Scientific Congress of Golf. Human Kinetics. pp. 407, 408. ISBN 0736000208. 
  3. ^ Cross, Rod (May 2002). "Measurements of the horizontal coefficient of restitution for a superball and a tennis ball". American Journal of Physics (American Association of Physics Teachers) 70 (5): 482–489. doi:10.1119/1.1450571. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=AJPIAS000070000005000482000001&idtype=cvips&gifs=yes&ref=no. Retrieved 1 February 2010. 
  4. ^ MacInnes, Iain (May, 2007). "Debouncing a Superball". The Physics Teacher (American Association of Physics Teachers) 45 (5): 304–305. doi:10.1119/1.2731280. "For bounces on a wooden bench top, the coefficient of restitution,....is typically about e = 0.8." 
  5. ^ Myers, Rusty L. (December 2005). The Basics of Physics. Greenwood. p. 304. ISBN 0313328579. http://books.google.com/books?id=KnynjL44pI4C&pg=PA304&dq=Superball&lr=&client=firefox-a&cd=50#v=onepage&q=Superball&f=false. Retrieved 5 February 2010. "...on a hard surface...0.85 for a superball" 
  6. ^ http://www.ideafinder.com/history/inventions/superball.htm
  7. ^ Wham-O Super Book Celebrating 60 Years Inside the Fun Factory By Tim Walsh ISBN 9780811864459
  8. ^ a b c d Wulffson, Don L; Laurie Keller (July 2000). Toys!: Amazing Stories Behind Some Great Inventions. Henry Holt and Co. pp. 92–94. ISBN 0805061967. 
  9. ^ a b c Weiss, Joanna (August 21, 2005). "Toy story". The Boston Globe. http://www.boston.com/news/globe/ideas/articles/2005/08/21/toy_story/?page=2. Retrieved 2 February 2010. 
  10. ^ a b Griswald, Wesley S. (January 1966). "Can You Invent a Million-Dollar Fad?". Popular Science 188 (1): 78–81. 
  11. ^ Kallen, Stuart A. (February 2004). Arts and Entertainment. Lucent Library of Historical Eras - The 1960s. Lucent. pp. 84. ISBN 1590183886. 
  12. ^ a b Rielly, Edward J. (May 2003). "Leisure Activities". The 1960s. Greenwood. pp. 108. ISBN 0313312613. http://books.google.com/books?id=h3hAR5c9QFcC&pg=PA108&dq=Superball&lr=&cd=42#v=onepage&q=super%20ball&f=false. Retrieved 5 February 2010. 
  13. ^ "A Boom with a Bounce: The U.S. is Having a Ball". Life (Time, Inc) 59 (23): 69, 74. December 3, 1965. ISSN 0024-3019. http://books.google.com/books?id=EUwEAAAAMBAJ&pg=PA69&dq=Superball&client=firefox-a&cd=1#v=onepage&q=Super%20Ball&f=false. Retrieved 4 February 2010. 
  14. ^ a b Hoffmann, Frank W.; William G. Bailey (August, 1994). Fashion & Merchandising Fads. Routledge. pp. 243–244. ISBN 1560243767. 
  15. ^ "California Happy but Wants New Winners". Billboard: 43, 44. December 31, 1966. 
  16. ^ a b Jones, Pamela (November, 2007). Alcides Lanza: Portrait of a Composer. McGill-Queen's University Press. pp. 131. ISBN 0773532641. http://books.google.com/books?id=GO1U-jH-4Z4C&pg=PA131&dq=Superball&lr=&cd=28#v=onepage&q=Superball&f=false. 
  17. ^ MacCambridge, Michael. America's Game. New York: Random House, 2004, p. 237.
  18. ^ Rex W. Huppke (2007-01-30). "Legends of the Bowl". Chicago Tribune. http://www.chicagotribune.com/sports/football/bears/chi-0701300052jan30,1,233400.story?track=rss&ctrack=1&cset=true. Retrieved 2007-01-31. "Lamar Hunt, who died in December, coined the term Super Bowl in the late 1960s after watching his kids play with a Super Ball, the bouncy creation of iconic toy manufacturer Wham-O." 
  19. ^ Harter, William G. (June 1971). "Velocity Amplification in Collision Experiments Involving Superballs". American Journal of Physics (American Association of Physics Teachers) 39 (6): 656–663. doi:10.1119/1.1986253. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=AJPIAS000039000006000656000001&idtype=cvips&gifs=yes&ref=no. Retrieved 1 February 2010. 
  20. ^ Browne, Michael E. (July 1999). "9: Linear Momentum and Collisions". Schaum's Outline of Theory and Problems of physics for Engineering and Science. McGraw-Hill. pp. 118–119. ISBN 007008498X. http://books.google.com/books?id=5gURYN4vFx4C&pg=PA118&dq=Superball&lr=&client=firefox-a&cd=37#v=onepage&q=Superball&f=false. Retrieved 5 February 2010. 
  21. ^ Garwin, Richard L.. "Kinematics of an Ultraelastic Rough Ball". American Journal of Physics (American Association of Physics Teachers) 37 (1): 88–92. http://www.rpi.edu/dept/phys/courses/PHYS1150/GarwinSuperBall.pdf. Retrieved 1 February 2010. "A Rough ball which conserves kinetic energy exhibits unexpected behavior after a single bounce and bizarre behavior after three bounces against parallel surfaces. The Wham-O Super-Ball...appears to approximate this behavior...quite different from that of a...smooth ball" 
  22. ^ a b Coatta, Dan; Bram Lambrecht (December 10, 2004). Dynamics of a Super Ball: How Reversible Tangential Impacts Make for an Entertaining Toy. pp. 1. http://www.me.berkeley.edu/ME170/Bram/bram_superball_paper.pdf. Retrieved 1 February 2010. "Super balls are simple toys that exhibit surprisingly complex behavior. Part of the fun of a super ball is a result of the high friction between the rubber of the ball and the surface it bounces against. This friction places moments on the ball that cause it to spin after bouncing. The exchange of energy between rotational and translational forms that occurs at each collision makes the super ball’s behavior difficult to predict." 
  23. ^ Crawford, Frank S. (September 1982). "Superball and time-reversal invariance". American Journal of Physics (American Association of Physics Teachers) 50 (9): 856. 
  24. ^ Bridges, Richard ((December 1991). "The spin of a bouncing `superball'". Physics Education 26 (6): 350–354. http://www.iop.org/EJ/abstract/0031-9120/26/6/003. Retrieved 1 February 2010. "Strobe photographs of a spinning, bouncing `superball' are analysed to determine whether observed reversals of spin during bouncing fit a model analogous to Newton's experimental law of restitution. Rough, but imperfect agreement is found." 
  25. ^ Aston, Philip J.; R Shail (October 11, 2007). "The Dynamics of a Bouncing Superball With Spin". Dynamical Systems. http://personal.maths.surrey.ac.uk/st/P.Aston/Papers/bouncing_ball1.pdf. Retrieved 1 February 2010. "When a superball is thrown forwards but with backspin, it is observed to reverse both direction and spin for a few bounces before settling to bouncing motion in one direction." 
  26. ^ a b Stronge, W. J. (March 2004). Impact Mechanics. Cambridge University Press. p. 112. ISBN 0521602890. http://books.google.com/books?id=nHgcS0bfZ28C&pg=PA112&dq=Superball&client=firefox-a&cd=5#v=onepage&q=Superball&f=false. Retrieved 4 February 2010. 
  27. ^ Stronge, W. J. (March 2004). Impact Mechanics. Cambridge University Press. pp. 94–95. ISBN 0521602890. http://books.google.com/books?id=nHgcS0bfZ28C&pg=PA112&dq=Superball&client=firefox-a&cd=5#v=onepage&q=Superball&f=false. Retrieved 4 February 2010. 
  28. ^ Brogliato, Bernard (April1999). Nonsmooth Mechanics: Models, Dynamics, and Control. Springer. pp. 153. ISBN 1852331437. http://books.google.com/books?id=qKCdH7HklEwC&pg=PA153&dq=Superball&lr=&cd=64#v=onepage&q=Superball&f=false. Retrieved 5 February 2010. 

External links