Subderivative

In mathematics, the concepts of subderivative, subgradient, and subdifferential arise in convex analysis, that is, in the study of convex functions, often in connection to convex optimization.

Let f:IR be a real-valued convex function defined on an open interval of the real line. Such a function need not be differentiable at all points: For example, the absolute value function f(x)=|x| is nondifferentiable when x=0. However, as seen in the picture on the right, for any x0 in the domain of the function one can draw a line which goes through the point (x0, f(x0)) and which is everywhere either touching or below the graph of f. The slope of such a line is called a subderivative (because the line is under the graph of f).

Contents

Definition

Rigorously, a subderivative of a function f:IR at a point x0 in the open interval I is a real number c such that

f(x)-f(x_0)\ge c(x-x_0)

for all x in I. One may show that the set of subderivatives at x0 for a convex function is a nonempty closed interval [a, b], where a and b are the one-sided limits

a=\lim_{x\to x_0^-}\frac{f(x)-f(x_0)}{x-x_0}
b=\lim_{x\to x_0^%2B}\frac{f(x)-f(x_0)}{x-x_0}

which are guaranteed to exist and satisfy ab.

The set [a, b] of all subderivatives is called the subdifferential of the function f at x0. If f is convex and its subdifferential at x_o contains exactly one subderivative, then f is differentiable at x_0.[1]

Examples

Consider the function f(x)=|x| which is convex. Then, the subdifferential at the origin is the interval [−1, 1]. The subdifferential at any point x0<0 is the singleton set {−1}, while the subdifferential at any point x0>0 is the singleton {1}.

Properties

The subgradient

The concepts of subderivative and subdifferential can be generalized to functions of several variables. If f:UR is a real-valued convex function defined on a convex open set in the Euclidean space Rn, a vector v in that space is called a subgradient at a point x0 in U if for any x in U one has

f(x)-f(x_0)\ge v\cdot (x-x_0)

where the dot denotes the dot product. The set of all subgradients at x0 is called the subdifferential at x0 and is denoted ∂f(x0). The subdifferential is always a nonempty convex compact set.

These concepts generalize further to convex functions f:UR on a convex set in a locally convex space V. A functional v in the dual space V is called subgradient at x0 in U if

f(x)-f(x_0)\ge v^*(x-x_0).

The set of all subgradients at x0 is called the subdifferential at x0 and is again denoted ∂f(x0). The subdifferential is always a convex closed set. It can be an empty set; consider for example an unbounded operator, which is convex, but has no subgradient. If f is continuous, the subdifferential is nonempty.

See also

References

  1. ^ R. T. Rockafellar Convex analysis 1970. Theorem 25.1, p.242