Stratospheric sulfate aerosols (geoengineering)
The ability of stratospheric sulfate aerosols to create a global dimming effect has made them a possible candidate for use in geoengineering projects[2] to limit the effect and impact of climate change due to rising levels of greenhouse gases.[3] Delivery of precursor sulfide gases such as hydrogen sulfide (H2S) or sulfur dioxide (SO2) by artillery, aircraft[1] and balloons has been proposed.[4]
Tom Wigley calculated the impact of injecting sulfate particles, or aerosols, every one to four years into the stratosphere in amounts equal to those lofted by the volcanic eruption of Mount Pinatubo in 1991,[5] but did not address the many technical and political challenges involved in potential geoengineering efforts.[6] If found to be economically, environmentally and technologically viable, such injections could provide a "grace period" of up to 20 years before major cutbacks in greenhouse gas emissions would be required, he concludes.
Direct delivery of precursors is proposed by Paul Crutzen.[1] This would typically be achieved using sulfide gases such as dimethyl sulfide, sulfur dioxide (SO2), carbonyl sulfide, or hydrogen sulfide (H2S).[4] These compounds would be delivered using artillery, aircraft (such as the high-flying F15C)[1] or balloons, and result in the formation of compounds with the sulfate anion SO42-.[4]
According to estimates by the Council on Foreign Relations, "one kilogram of well placed sulfur in the stratosphere would roughly offset the warming effect of several hundred thousand kilograms of carbon dioxide."[7]
Aerosol formation
Primary aerosol formation, also known as homogeneous aerosol formation results when gaseous SO2 combines with water to form aqueous sulfuric acid (H2SO4). This acidic liquid solution is in the form of a vapor and condenses onto particles of solid matter, either meteoritic in origin or from dust carried from the surface to the stratosphere. Secondary or heterogeneous aerosol formation occurs when H2SO4 vapor condenses onto existing aerosol particles. Existing aerosol particles or droplets also run into each other, creating larger particles or droplets in a process known as coagulation. Warmer atmospheric temperatures also lead to larger particles. These larger particles would be less effective at scattering sunlight because the peak light scattering is achieved by particles with a diameter of 0.3 μm.[8]
Arguments for the technique
The arguments in favour of this approach are:
- Natural process[9] — Stratospheric sulfur aerosols are created by existing atmospheric processes (especially volcanoes), the behaviour of which has been studied observationally.[10] Other, more speculative geoengineering schemes, do not have natural analogs (e.g. space sunshade).
- Speed of action[11] — Solar radiation management works quickly, in contrast to carbon sequestration projects such as carbon dioxide air capture which would take longer to have an effect, as the latter relies on removing large amounts of carbon dioxide before they become effective;[5] however, gaps in understanding of these processes exist (e.g. the effect on stratospheric climate and on rainfall patterns)[12] and further research is needed.[13]
- Technological feasibility — In contrast to other geoengineering schemes, such as space sunshade, the technology required is pre-existing: chemical manufacturing, artillery shells, fighter aircraft, weather balloons, etc.[4]
- Cost — The low-tech nature of this approach has led commentators to suggest it will cost less than many other interventions. Costs cannot be derived in a wholly objective fashion, as pricing can only be roughly estimated at an early stage. However, an assessment reported in Newscientist suggests it would be cheap relative to cutting emissions.[14] According to Paul Crutzen annual cost of enough stratospheric sulfur injections to counteract effects of doubling CO2 concentrations would be $25–50 billion a year.[3] This is over 100 times cheaper than producing the same temperature change by reducing CO2 emissions.[15]
- Efficacy — Most geoengineering schemes can only provide a limited intervention in the climate - one cannot reduce the temperature by more than a certain amount with each technique. New research by Lenton and Vaughan suggests that this technique may have a high radiative 'forcing potential'.[16]
- Tipping points — Application of this technique may prevent climate tipping elements, such as the loss of the Greenland ice sheet[17]
Efficacy problems
All geoengineering schemes have potential efficacy problems, due to the difficulty of modelling their impact and the inherently complex nature of the global climate system. Nevertheless, certain efficacy issues are specific to the use of this particular technique.
- Lifespan of aerosols — Tropospheric sulfur aerosols are short lived.[18] Delivery of particles into the lower stratosphere will typically ensure that they remain aloft only for a few weeks or months.[19] To ensure endurance, high-level delivery is needed, ensuring a typical endurance of several years. Further, sizing of particles is crucial to their endurance.[20]
- Aerosol delivery — Even discounting the challenges of lifting, there are still significant challenges in designing a delivery system that is capable of delivering the precursor gases in the right manner to encourage effective aerosol formation. For example, it is unclear whether aerial shells should be designed to leak slowly or burst suddenly. The size of aerosol particles is also crucial, and efforts must be made to ensure optimal delivery.[20]
- Distribution — It is logistically difficult to deliver aerosols evenly around the globe. Challenges therefore exist in creating a network of delivery points sufficient to allow viable geoengineering from a limited number of launching sites.
Possible side effects
Geoengineering in general is a controversial technique, and carries problems and risks, such as weaponisation. However, certain problems are specific to, or more pronounced with this particular technique.[21]
- Drought, particularly monsoon failure in Asia and Africa is a major risk.[22]
- Ozone depletion is a potential side effect of sulfur aerosols;[23][24] and these concerns have been supported by modelling.[25]
- Tarnishing of the sky: Aerosols will noticeably affect the appearance of the sky, resulting in a potential "whitening" effect, and altered sunsets.[26]
- Tropopause warming and the humidification of the stratosphere.[24]
- Effect on clouds: Cloud formation may be affected, notably cirrus clouds and polar stratospheric clouds.
- Effect on ecosystems: The diffusion of sunlight may affect plant growth.[27][28][29]but more importantly increase the rate of ocean acidification by the deposition of hydrogen ions from the acidic rain[30]
- Effect on solar energy: Incident sunlight will be lower,[31] which may affect solar power systems both directly and disproportionately, especially in the case that such systems rely on direct radiation.[32]
- Deposition effects: Although predicted to be insignificant,[33] there is nevertheless a risk of direct environmental damage from falling particles.
- Uneven effects: Aerosols are reflective, making them more effective during the day. Greenhouse gases block outbound radiation at all times of day.[34]
Further, the delivery methods may cause significant problems, notably climate change[35] and possible ozone depletion[36] in the case of aircraft, and litter in the case of untethered balloons.
Delivery methods
Various techniques have been proposed for delivering the aerosol precursor gases (H2S and SO2).[3] The required altitude to enter the stratosphere is the height of the tropopause, which varies from 11 km (6.8 miles/36,000 feet) at the poles to 17 km (11 miles/58,000 feet) at the equator.
- Aircraft such as the F15-C variant of the F-15 Eagle have the necessary flight ceiling, but limited payload. Military tanker aircraft such as the KC-135 Stratotanker and KC-10 Extender also have the necessary ceiling and have greater payload.[1]
- Modified Artillery might have the necessary capability,[37] but requires a polluting and expensive gunpowder charge to loft the payload.
- High-altitude balloons can be used to lift precursor gases, in tanks, bladders or in the balloons' envelope. Balloons can also be used to lift pipes and hoses, but no moored balloon has ever been deployed to the necessary altitude.
See also
Further reading
References
- ^ a b c d e Robock, A.; Marquardt, A.; Kravitz, B.; Stenchikov, G. (2009). "Benefits, risks, and costs of stratospheric geoengineering". Geophysical Research Letters 36 (19): L19703. Bibcode 2009GeoRL..3619703R. doi:10.1029/2009GL039209. edit
- ^ Launder B. and J.M.T. Thompson (2008). "Global and Arctic climate engineering: numerical model studies". Phil. Trans. R. Soc. A 366 (1882): 4039–4056. Bibcode 2008RSPTA.366.4039C. doi:10.1098/rsta.2008.0132. PMID 18757275. http://journals.royalsociety.org/content/84j11614488142u8/.
- ^ a b c Crutzen, P. J. (2006). "Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?". Climatic Change 77 (3–4): 211–220. doi:10.1007/s10584-006-9101-y. http://www.springerlink.com/content/t1vn75m458373h63/fulltext.pdf. edit
- ^ a b c d Rasch, J.; Tilmes, S.; Turco, P.; Robock, A.; Oman, L.; Chen, C.; Stenchikov, L.; Garcia, R. (Nov 2008). "An overview of geoengineering of climate using stratospheric sulphate aerosols.". Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 366 (1882): 4007–4037. Bibcode 2008RSPTA.366.4007R. doi:10.1098/rsta.2008.0131. ISSN 1364-503X. PMID 18757276. edit
- ^ a b Wigley, T. M. L. (Oct 2006). "A combined mitigation/geoengineering approach to climate stabilization". Science 314 (5798): 452–454. Bibcode 2006Sci...314..452W. doi:10.1126/science.1131728. ISSN 0036-8075. PMID 16973840. edit
- ^ "Stratospheric Injections Could Help Cool Earth, Computer Model Shows - News Release". National Center for Atmospheric Research. September 14, 2006. http://www.ucar.edu/news/releases/2006/injections.shtml. Retrieved June 15, 2011.
- ^ "The Geoengineering Option:A Last Resort Against Global Warming?". Geoengineering. Council on Foreign Affairs. March/April 2009. http://www.cfr.org/publication/18635/. Retrieved 2009-08-19.
- ^ Keith, David W. (2010). "Photophoretic Levitation of Engineered Aerosols for Geoengineering". Proceedings of the National Academy of Sciences of the United States of America 107 (38): 16428–16431. doi:10.1073/pnas.1009519107. ISSN 00278424.
- ^ Bates, S. S.; Lamb, B. K.; Guenther, A.; Dignon, J.; Stoiber, R. E. (1992). "Sulfur emissions to the atmosphere from natural sources". Journal of Atmospheric Chemistry 14: 315–337. doi:10.1007/BF00115242. edit
- ^ Zhao, J.; Turco, R. P.; Toon, O. B. (1995). "A model simulation of Pinatubo volcanic aerosols in the stratosphere". Journal of Geophysical Research 100: 7315. Bibcode 1995JGR...100.7315Z. doi:10.1029/94JD03325. edit
- ^ Matthews, D.; Caldeira, K. (Jun 2007). "Transient climate–carbon simulations of planetary geoengineering" (Free full text). Proceedings of the National Academy of Sciences of the United States of America 104 (24): 9949–9954. Bibcode 2007PNAS..104.9949M. doi:10.1073/pnas.0700419104. ISSN 0027-8424. PMC 1885819. PMID 17548822. http://www.pnas.org/cgi/pmidlookup?view=long&pmid=17548822. edit
- ^ Bala, G.; Duffy, B.; Taylor, E. (June 2008). "Impact of geoengineering schemes on the global hydrological cycle" (Free full text). Proceedings of the National Academy of Sciences of the United States of America 105 (22): 7664–7669. Bibcode 2008PNAS..105.7664B. doi:10.1073/pnas.0711648105. ISSN 0027-8424. PMC 2409412. PMID 18505844. http://www.pnas.org/cgi/pmidlookup?view=long&pmid=18505844. edit
- ^ Andrew Charlton-Perez and Eleanor Highwood. "Costs and benefits of geo-engineering in the Stratosphere" (PDF). http://www.met.reading.ac.uk/pg-research/downloads/2009/pgr-charlton.pdf. Retrieved 17 February 2009.
- ^ Brahic, Catherine (25 February 2009). "Hacking the planet: The only climate solution left? (NB cost data in accompanying image)". Reed Business Information Ltd.. http://www.newscientist.com/article/mg20126973.600-hacking-the-planet-the-only-climate-solution-left.html?full=true. Retrieved 2009-02-28.
- ^ "Research on Global Sun Block Needed Now". Nature (Nature Publishing Group) 463 (7280): 426–427. 28 January 2010. doi:10.1038/463426a. ISSN 00280836.
- ^ Lenton, Tim; Vaughan. "Radiative forcing potential of climate geoengineering". http://www.atmos-chem-phys-discuss.net/9/2559/2009/acpd-9-2559-2009.pdf. Retrieved 2009-02-28.
- ^ Irvine, P. J.; Lunt, D. J.; Stone, E. J.; Ridgwell, A. (2009). "The fate of the Greenland Ice Sheet in a geoengineered, high CO2world". Environmental Research Letters 4 (4): 045109. Bibcode 2009ERL.....4d5109I. doi:10.1088/1748-9326/4/4/045109. edit
- ^ Monastersky, Richard (1992). "Haze clouds the greenhouse - sulfur pollution slows global warming - includes related article". Science News. http://findarticles.com/p/articles/mi_m1200/is_/ai_12140641.
- ^ http://www.crosswalk.com/news/11572945/
- ^ a b Rasch, P. J.; Crutzen, P. J.; Coleman, D. B. (2008). "Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size". Geophysical Research Letters 35 (2): L02809. Bibcode 2008GeoRL..3502809R. doi:10.1029/2007GL032179. edit
- ^ Robock, A. (2008). "20 reasons why geoengineering may be a bad idea". Bulletin of the Atomic Scientists 64 (2): 14–19. doi:10.2968/064002006. edit
- ^ http://climate.envsci.rutgers.edu/pdf/2008JD010050small.pdf
- ^ Tabazadeh, A.; Drdla, K.; Schoeberl, R.; Hamill, P.; Toon, B. (Mar 2002). "Arctic "ozone hole" in a cold volcanic stratosphere" (Free full text). Proceedings of the National Academy of Sciences of the United States of America 99 (5): 2609–2612. Bibcode 2002PNAS...99.2609T. doi:10.1073/pnas.052518199. ISSN 0027-8424. PMC 122395. PMID 11854461. http://www.pnas.org/cgi/pmidlookup?view=long&pmid=11854461. edit
- ^ a b http://www.cosis.net/abstracts/EGU2008/10823/EGU2008-A-10823.pdf
- ^ Heckendorn, P; Weisenstein, D; Fueglistaler, S; Luo, B P; Rozanov, E; Schraner, M; Thomason, L W; Peter, T (2009). "The impact of geoengineering aerosols on stratospheric temperature and ozone". Environmental Research Letters 4 (4): 045108. Bibcode 2009ERL.....4d5108H. doi:10.1088/1748-9326/4/4/045108.
- ^ Olson, D. W., R. L. Doescher, and M. S. Olson (February 2004). "When the Sky Ran Red: The Story Behind The Scream". Sky & Telescope: 29–35.
- ^ L. Gu, et al. (1999). "Responses of Net Ecosystem Exchanges of Carbon Dioxide to Changes in Cloudiness: Results from Two North American Deciduous Forests". Journal of Geophysical Research 104 (31): 421–31,434.
- ^ L. Gu, et al. (2002). "Advantages of Diffuse Radiation for Terrestrial Ecosystem Productivity". Journal of Geophysical Research 107. Bibcode 2002JGRD.107f.ACL2G.
- ^ L. Gu, et al. (2003). "Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis". Science 299 (5615): 2035–38. doi:10.1126/science.1078366. PMID 12663919.
- ^ V. Fabri, et al. (2008). "Impacts of ocean acidification on marine fauna and ecosystem processes". Journal of Marine Science 65: 414–432. doi:10.1093/icesjms/fsn048.
- ^ Balan Govindasamy, Ken Caldeira (2000). "Geoengineering Earth’s Radiation Balance to Mitigate CO2-Induced Climate Change". Geophysical Research Letters 27 (14): 2141–4. Bibcode 2000GeoRL..27.2141G. doi:10.1093/1999GL006086.
- ^ Michael C. MacCracken (2006). "Geoengineering: Worthy of Cautious Evaluation?". Climatic Change 77 (3–4): 235–43. doi:10.1007/s10584-006-9130-6.
- ^ http://climate.envsci.rutgers.edu/pdf/aciddeposition7.pdf
- ^ "Sulfate Aerosol and Global Warming". University of Washington. http://www.washington.edu/research/pathbreakers/1969e.html.
- ^ "Chapter 6: Potential Climate Change from Aviation". Aviation and the Global Atmosphere. Intergovernmental Panel on Climate Change. http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/aviation/064.htm.
- ^ Robert Parson. "Will commercial supersonic aircraft damage the ozone layer?". Ozone Depletion FAQ. http://stason.org/TULARC/science-engineering/ozone-depletion-intro/24-Will-commercial-supersonic-aircraft-damage-the-ozone-laye.html.
- ^ PICATINNY ARSENAL DOVER N J. "PARAMETRIC STUDIES ON USE OF BOOSTED ARTILLERY PROJECTILES FOR HIGH ALTITUDE RESEARCH PROBES, PROJECT HARP,". http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0601409. Retrieved 2009-02-25.
External links
- Tropospheric Aerosol Program, United States Department of Energy Atmospheric Science Program (ASP)
- What can we do about climate change?, Oceanography magazine
- Global Warming and Ice Ages: Prospects for Physics-Based Modulation of Global Change, Lawrence Livermore National Laboratory
- Climate Change: A geoengineering fix?, Aerospace America
- The Geoengineering Option:A Last Resort Against Global Warming?, Council on Foreign Relations
- Geo-Engineering Climate Change with Sulfate Aerosols, Pacific Northwest National Laboratory
- Geo-Engineering Research, Parliamentary Office of Science and Technology
- Geo-engineering Options for Mitigating Climate Change, Department of Energy and Climate Change
- Unilateral Geoengineering, Council on Foreign Relations
- An overview of geoengineering of climate using stratospheric sulphate aerosols, The Royal Society
Related Patents
- US 5003186 "Stratospheric Welsbach seeding for reduction of global warming"
|
|
|
|
|
|
|
|
Opinion and climate change
|
|
|
|
|
|
|
|
|
|
|
Kyoto Protocol |
|
|
Governmental |
|
|
Emissions reduction |
|
|
Carbon-free energy |
|
|
Other |
|
|
|
|
|
|
|
|