Stratospheric sulfate aerosols (geoengineering)

The ability of stratospheric sulfate aerosols to create a global dimming effect has made them a possible candidate for use in geoengineering projects[2] to limit the effect and impact of climate change due to rising levels of greenhouse gases.[3] Delivery of precursor sulfide gases such as hydrogen sulfide (H2S) or sulfur dioxide (SO2) by artillery, aircraft[1] and balloons has been proposed.[4]

Tom Wigley calculated the impact of injecting sulfate particles, or aerosols, every one to four years into the stratosphere in amounts equal to those lofted by the volcanic eruption of Mount Pinatubo in 1991,[5] but did not address the many technical and political challenges involved in potential geoengineering efforts.[6] If found to be economically, environmentally and technologically viable, such injections could provide a "grace period" of up to 20 years before major cutbacks in greenhouse gas emissions would be required, he concludes.

Direct delivery of precursors is proposed by Paul Crutzen.[1] This would typically be achieved using sulfide gases such as dimethyl sulfide, sulfur dioxide (SO2), carbonyl sulfide, or hydrogen sulfide (H2S).[4] These compounds would be delivered using artillery, aircraft (such as the high-flying F15C)[1] or balloons, and result in the formation of compounds with the sulfate anion SO42-.[4]

According to estimates by the Council on Foreign Relations, "one kilogram of well placed sulfur in the stratosphere would roughly offset the warming effect of several hundred thousand kilograms of carbon dioxide."[7]

Contents

Aerosol formation

Primary aerosol formation, also known as homogeneous aerosol formation results when gaseous SO2 combines with water to form aqueous sulfuric acid (H2SO4). This acidic liquid solution is in the form of a vapor and condenses onto particles of solid matter, either meteoritic in origin or from dust carried from the surface to the stratosphere. Secondary or heterogeneous aerosol formation occurs when H2SO4 vapor condenses onto existing aerosol particles. Existing aerosol particles or droplets also run into each other, creating larger particles or droplets in a process known as coagulation. Warmer atmospheric temperatures also lead to larger particles. These larger particles would be less effective at scattering sunlight because the peak light scattering is achieved by particles with a diameter of 0.3 μm.[8]

Arguments for the technique

The arguments in favour of this approach are:

Efficacy problems

All geoengineering schemes have potential efficacy problems, due to the difficulty of modelling their impact and the inherently complex nature of the global climate system. Nevertheless, certain efficacy issues are specific to the use of this particular technique.

Possible side effects

Geoengineering in general is a controversial technique, and carries problems and risks, such as weaponisation. However, certain problems are specific to, or more pronounced with this particular technique.[21]

Further, the delivery methods may cause significant problems, notably climate change[35] and possible ozone depletion[36] in the case of aircraft, and litter in the case of untethered balloons.

Delivery methods

Various techniques have been proposed for delivering the aerosol precursor gases (H2S and SO2).[3] The required altitude to enter the stratosphere is the height of the tropopause, which varies from 11 km (6.8 miles/36,000 feet) at the poles to 17 km (11 miles/58,000 feet) at the equator.

See also

Further reading

References

  1. ^ a b c d e Robock, A.; Marquardt, A.; Kravitz, B.; Stenchikov, G. (2009). "Benefits, risks, and costs of stratospheric geoengineering". Geophysical Research Letters 36 (19): L19703. Bibcode 2009GeoRL..3619703R. doi:10.1029/2009GL039209.  edit
  2. ^ Launder B. and J.M.T. Thompson (2008). "Global and Arctic climate engineering: numerical model studies". Phil. Trans. R. Soc. A 366 (1882): 4039–4056. Bibcode 2008RSPTA.366.4039C. doi:10.1098/rsta.2008.0132. PMID 18757275. http://journals.royalsociety.org/content/84j11614488142u8/. 
  3. ^ a b c Crutzen, P. J. (2006). "Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?". Climatic Change 77 (3–4): 211–220. doi:10.1007/s10584-006-9101-y. http://www.springerlink.com/content/t1vn75m458373h63/fulltext.pdf.  edit
  4. ^ a b c d Rasch, J.; Tilmes, S.; Turco, P.; Robock, A.; Oman, L.; Chen, C.; Stenchikov, L.; Garcia, R. (Nov 2008). "An overview of geoengineering of climate using stratospheric sulphate aerosols.". Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 366 (1882): 4007–4037. Bibcode 2008RSPTA.366.4007R. doi:10.1098/rsta.2008.0131. ISSN 1364-503X. PMID 18757276.  edit
  5. ^ a b Wigley, T. M. L. (Oct 2006). "A combined mitigation/geoengineering approach to climate stabilization". Science 314 (5798): 452–454. Bibcode 2006Sci...314..452W. doi:10.1126/science.1131728. ISSN 0036-8075. PMID 16973840.  edit
  6. ^ "Stratospheric Injections Could Help Cool Earth, Computer Model Shows - News Release". National Center for Atmospheric Research. September 14, 2006. http://www.ucar.edu/news/releases/2006/injections.shtml. Retrieved June 15, 2011. 
  7. ^ "The Geoengineering Option:A Last Resort Against Global Warming?". Geoengineering. Council on Foreign Affairs. March/April 2009. http://www.cfr.org/publication/18635/. Retrieved 2009-08-19. 
  8. ^ Keith, David W. (2010). "Photophoretic Levitation of Engineered Aerosols for Geoengineering". Proceedings of the National Academy of Sciences of the United States of America 107 (38): 16428–16431. doi:10.1073/pnas.1009519107. ISSN 00278424. 
  9. ^ Bates, S. S.; Lamb, B. K.; Guenther, A.; Dignon, J.; Stoiber, R. E. (1992). "Sulfur emissions to the atmosphere from natural sources". Journal of Atmospheric Chemistry 14: 315–337. doi:10.1007/BF00115242.  edit
  10. ^ Zhao, J.; Turco, R. P.; Toon, O. B. (1995). "A model simulation of Pinatubo volcanic aerosols in the stratosphere". Journal of Geophysical Research 100: 7315. Bibcode 1995JGR...100.7315Z. doi:10.1029/94JD03325.  edit
  11. ^ Matthews, D.; Caldeira, K. (Jun 2007). "Transient climate–carbon simulations of planetary geoengineering" (Free full text). Proceedings of the National Academy of Sciences of the United States of America 104 (24): 9949–9954. Bibcode 2007PNAS..104.9949M. doi:10.1073/pnas.0700419104. ISSN 0027-8424. PMC 1885819. PMID 17548822. http://www.pnas.org/cgi/pmidlookup?view=long&pmid=17548822.  edit
  12. ^ Bala, G.; Duffy, B.; Taylor, E. (June 2008). "Impact of geoengineering schemes on the global hydrological cycle" (Free full text). Proceedings of the National Academy of Sciences of the United States of America 105 (22): 7664–7669. Bibcode 2008PNAS..105.7664B. doi:10.1073/pnas.0711648105. ISSN 0027-8424. PMC 2409412. PMID 18505844. http://www.pnas.org/cgi/pmidlookup?view=long&pmid=18505844.  edit
  13. ^ Andrew Charlton-Perez and Eleanor Highwood. "Costs and benefits of geo-engineering in the Stratosphere" (PDF). http://www.met.reading.ac.uk/pg-research/downloads/2009/pgr-charlton.pdf. Retrieved 17 February 2009. 
  14. ^ Brahic, Catherine (25 February 2009). "Hacking the planet: The only climate solution left? (NB cost data in accompanying image)". Reed Business Information Ltd.. http://www.newscientist.com/article/mg20126973.600-hacking-the-planet-the-only-climate-solution-left.html?full=true. Retrieved 2009-02-28. 
  15. ^ "Research on Global Sun Block Needed Now". Nature (Nature Publishing Group) 463 (7280): 426–427. 28 January 2010. doi:10.1038/463426a. ISSN 00280836. 
  16. ^ Lenton, Tim; Vaughan. "Radiative forcing potential of climate geoengineering". http://www.atmos-chem-phys-discuss.net/9/2559/2009/acpd-9-2559-2009.pdf. Retrieved 2009-02-28. 
  17. ^ Irvine, P. J.; Lunt, D. J.; Stone, E. J.; Ridgwell, A. (2009). "The fate of the Greenland Ice Sheet in a geoengineered, high CO2world". Environmental Research Letters 4 (4): 045109. Bibcode 2009ERL.....4d5109I. doi:10.1088/1748-9326/4/4/045109.  edit
  18. ^ Monastersky, Richard (1992). "Haze clouds the greenhouse - sulfur pollution slows global warming - includes related article". Science News. http://findarticles.com/p/articles/mi_m1200/is_/ai_12140641. 
  19. ^ http://www.crosswalk.com/news/11572945/
  20. ^ a b Rasch, P. J.; Crutzen, P. J.; Coleman, D. B. (2008). "Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size". Geophysical Research Letters 35 (2): L02809. Bibcode 2008GeoRL..3502809R. doi:10.1029/2007GL032179.  edit
  21. ^ Robock, A. (2008). "20 reasons why geoengineering may be a bad idea". Bulletin of the Atomic Scientists 64 (2): 14–19. doi:10.2968/064002006.  edit
  22. ^ http://climate.envsci.rutgers.edu/pdf/2008JD010050small.pdf
  23. ^ Tabazadeh, A.; Drdla, K.; Schoeberl, R.; Hamill, P.; Toon, B. (Mar 2002). "Arctic "ozone hole" in a cold volcanic stratosphere" (Free full text). Proceedings of the National Academy of Sciences of the United States of America 99 (5): 2609–2612. Bibcode 2002PNAS...99.2609T. doi:10.1073/pnas.052518199. ISSN 0027-8424. PMC 122395. PMID 11854461. http://www.pnas.org/cgi/pmidlookup?view=long&pmid=11854461.  edit
  24. ^ a b http://www.cosis.net/abstracts/EGU2008/10823/EGU2008-A-10823.pdf
  25. ^ Heckendorn, P; Weisenstein, D; Fueglistaler, S; Luo, B P; Rozanov, E; Schraner, M; Thomason, L W; Peter, T (2009). "The impact of geoengineering aerosols on stratospheric temperature and ozone". Environmental Research Letters 4 (4): 045108. Bibcode 2009ERL.....4d5108H. doi:10.1088/1748-9326/4/4/045108. 
  26. ^ Olson, D. W., R. L. Doescher, and M. S. Olson (February 2004). "When the Sky Ran Red: The Story Behind The Scream". Sky & Telescope: 29–35. 
  27. ^ L. Gu, et al. (1999). "Responses of Net Ecosystem Exchanges of Carbon Dioxide to Changes in Cloudiness: Results from Two North American Deciduous Forests". Journal of Geophysical Research 104 (31): 421–31,434. 
  28. ^ L. Gu, et al. (2002). "Advantages of Diffuse Radiation for Terrestrial Ecosystem Productivity". Journal of Geophysical Research 107. Bibcode 2002JGRD.107f.ACL2G. 
  29. ^ L. Gu, et al. (2003). "Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis". Science 299 (5615): 2035–38. doi:10.1126/science.1078366. PMID 12663919. 
  30. ^ V. Fabri, et al. (2008). "Impacts of ocean acidification on marine fauna and ecosystem processes". Journal of Marine Science 65: 414–432. doi:10.1093/icesjms/fsn048. 
  31. ^ Balan Govindasamy, Ken Caldeira (2000). "Geoengineering Earth’s Radiation Balance to Mitigate CO2-Induced Climate Change". Geophysical Research Letters 27 (14): 2141–4. Bibcode 2000GeoRL..27.2141G. doi:10.1093/1999GL006086. 
  32. ^ Michael C. MacCracken (2006). "Geoengineering: Worthy of Cautious Evaluation?". Climatic Change 77 (3–4): 235–43. doi:10.1007/s10584-006-9130-6. 
  33. ^ http://climate.envsci.rutgers.edu/pdf/aciddeposition7.pdf
  34. ^ "Sulfate Aerosol and Global Warming". University of Washington. http://www.washington.edu/research/pathbreakers/1969e.html. 
  35. ^ "Chapter 6: Potential Climate Change from Aviation". Aviation and the Global Atmosphere. Intergovernmental Panel on Climate Change. http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/aviation/064.htm. 
  36. ^ Robert Parson. "Will commercial supersonic aircraft damage the ozone layer?". Ozone Depletion FAQ. http://stason.org/TULARC/science-engineering/ozone-depletion-intro/24-Will-commercial-supersonic-aircraft-damage-the-ozone-laye.html. 
  37. ^ PICATINNY ARSENAL DOVER N J. "PARAMETRIC STUDIES ON USE OF BOOSTED ARTILLERY PROJECTILES FOR HIGH ALTITUDE RESEARCH PROBES, PROJECT HARP,". http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0601409. Retrieved 2009-02-25. 

External links

Related Patents