In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on an interval [a,b] can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are among the simplest functions, and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation. The original version of this result was established by Karl Weierstrass in 1885.
Marshall H. Stone considerably generalized the theorem (Stone 1937) and simplified the proof (Stone 1948). His result is known as the Stone–Weierstrass theorem. The Stone–Weierstrass theorem generalizes the Weierstrass approximation theorem in two directions: instead of the real interval [a,b], an arbitrary compact Hausdorff space X is considered, and instead of the algebra of polynomial functions, approximation with elements from more general subalgebras of C(X) is investigated. The Stone–Weierstrass theorem is a vital result in the study of the algebra of continuous functions on a compact Hausdorff space.
Further, there is a generalization of the Stone–Weierstrass theorem to noncompact Tychonoff spaces, namely, any continuous function on a Tychonoff space is approximated uniformly on compact sets by algebras of the type appearing in the Stone–Weierstrass theorem and described below.
A different generalization of Weierstrass' original theorem is Mergelyan's theorem, which generalizes it to functions defined on certain subsets of the complex plane.
Contents |
The statement of the approximation theorem as originally discovered by Weierstrass is as follows:
A constructive proof of this theorem (for ƒ real-valued) using Bernstein polynomials is outlined on that page.
As a consequence of the Weierstrass approximation theorem, one can show that the space C[a,b] is separable: the polynomial functions are dense, and each polynomial function can be uniformly approximated by one with rational coefficients; there are only countably many polynomials with rational coefficients. Since C[a,b] is Hausdorff and separable it follows that C[a,b] has cardinality equal to 2ℵ0 — the same cardinality as the cardinality of the reals.
The set C[a,b] of continuous real-valued functions on [a,b], together with the supremum norm ||f|| = supx∈[a,b] |f(x)|, is a Banach algebra, (i.e. an associative algebra and a Banach space such that ||fg|| ≤ ||f||·||g|| for all f, g). The set of all polynomial functions forms a subalgebra of C[a,b] (i.e. a vector subspace of C[a,b] that is closed under multiplication of functions), and the content of the Weierstrass approximation theorem is that this subalgebra is dense in C[a,b].
Stone starts with an arbitrary compact Hausdorff space X and considers the algebra C(X,R) of real-valued continuous functions on X, with the topology of uniform convergence. He wants to find subalgebras of C(X,R) which are dense. It turns out that the crucial property that a subalgebra must satisfy is that it separates points: a set A of functions defined on X is said to separate points if, for every two different points x and y in X there exists a function p in A with p(x) not equal to p(y).
The statement of Stone–Weierstrass is:
This implies Weierstrass’ original statement since the polynomials on [a,b] form a subalgebra of C[a,b] which contains the constants and separates points.
A version of the Stone–Weierstrass theorem is also true when X is only locally compact. Let C0(X, R) be the space of real-valued continuous functions on X which vanish at infinity; that is, a continuous function f is in C0(X, R) if, for every ε > 0, there exists a compact set K ⊂ X such that f < ε on X \ K. Again, C0(X, R) is a Banach algebra with the supremum norm. A subalgebra A of C0(X, R) is said to vanish nowhere if not all of the elements of A simultaneously vanish at a point; that is, for every x in X, there is some f in A such that f(x) ≠ 0. The theorem generalizes as follows:
This version clearly implies the previous version in the case when X is compact, since in that case C0(X, R) = C(X, R). There are also more general versions of the Stone–Weierstrass that weaken the assumption of local compactness.[1]
The Stone–Weierstrass theorem can be used to prove the following two statements which go beyond Weierstrass's result.
The theorem has many other applications to analysis, including:
Slightly more general is the following theorem, where we consider the algebra C(X,C) of complex-valued continuous functions on the compact space X, again with the topology of uniform convergence. This is a C*-algebra with the *-operation given by pointwise complex conjugation.
The complex unital *-algebra generated by S consists of all those functions that can be obtained from the elements of S by throwing in the constant function 1 and adding them, multiplying them, conjugating them, or multiplying them with complex scalars, and repeating finitely many times.
This theorem implies the real version, because if a sequence of complex-valued functions uniformly approximate a given function f, then the real parts of those functions uniformly approximate the real part of f. As in the real case, an analog of this theorem is true for locally compact Hausdorff spaces.
Let X be a compact Hausdorff space. Stone's original proof of the theorem used the idea of boolean rings inside C(X,R); that is, subsets B of C(X,R) such that for every f, g in B, the functions f+g and max{f,g} are also in B. The boolean ring version of the Stone–Weierstrass theorem states (Hewitt & Stromberg 1965, Theorem 7.29):
A similar version of the theorem applies to lattices in C(X,R). A subset L of C(X,R) is called a lattice if for any two elements f, g in L, the functions max(f,g) and min(f,g) also belong to L. The lattice version of the Stone–Weierstrass theorem states:
The above versions of Stone–Weierstrass can be proven from this version once one realizes that the lattice property can also be formulated using the absolute value |f| which in turn can be approximated by polynomials in f.
More precise information is available:
Another generalization of the Stone–Weierstrass theorem is due to Errett Bishop. Bishop's theorem is as follows (Bishop 1961):
Glicksberg (1962) gives a short proof of Bishop's theorem using the Krein–Milman theorem in an essential way, as well as the Hahn–Banach theorem. See also Rudin (1973, §5.7).
The historical publication of Weierstrass (in German language) is freely available from the digital online archive of the Berlin Brandenburgische Akademie der Wissenschaften:
Important historical works of Stone include:
'Optimization: Insights and Applications', Jan Brinkhuis and Vladimir Tikhomirov: 2005, Princeton University Press