In probability theory and statistics, a stochastic order quantifies the concept of one random variable being "bigger" than another. These are usually partial orders, so that one random variable may be neither stochastically greater than, less than nor equal to another random variable . Many different orders exist, which have different applications.
Contents |
A real random variable is less than a random variable in the "usual stochastic order" if
where denotes the probability of an event. This is sometimes denoted or . If additionally for some , then is stochastically strictly less than , sometimes denoted .
The following rules describe cases when one random variable is stochastically less than or equal to another. Strict version of some of these rules also exist.
If and then in distribution.
Stochastic dominance[1] is a stochastic ordering used in decision theory. Several "orders" of stochastic dominance are defined.
The hazard rate of a non-negative random variable with absolutely continuous distribution function and density function is defined as
Given two non-negative variables and with absolutely continuous distribution and , and with hazard rate functions and , respectively, is said to be smaller than in the hazard rate order (denoted as ) if
or equivalently if
Let and two continuous (or discrete) random variables with densities (or discrete densities) and , respectively, so that increases in over the union of the supports of and ; in this case, is smaller than in the likelihood ratio order ().
If two variables have the same mean, they can still be compared by how "spread out" their distributions are. This is captured to a limited extent by the variance, but more fully by a range of stochastic orders.
Convex order is a special kind of variability order. Under the convex ordering, is less than if and only if for all convex , .
Laplace transform order is a special case of convex order where is an exponential function: . Clearly, two random variables that are convex ordered are also Laplace transform ordered. The converse is not true.