Stochastic ordering

In probability theory and statistics, a stochastic order quantifies the concept of one random variable being "bigger" than another. These are usually partial orders, so that one random variable A may be neither stochastically greater than, less than nor equal to another random variable B. Many different orders exist, which have different applications.

Contents

Usual stochastic order

A real random variable A is less than a random variable B in the "usual stochastic order" if

\Pr(A>x) \le \Pr(B>x)\text{ for all }x \in (-\infty,\infty),

where \Pr(\cdot) denotes the probability of an event. This is sometimes denoted A \preceq B or A \le_{st} B. If additionally \Pr(A>x) < \Pr(B>x) for some x, then A is stochastically strictly less than B, sometimes denoted A \prec B.

Characterizations

The following rules describe cases when one random variable is stochastically less than or equal to another. Strict version of some of these rules also exist.

  1. A\preceq B if and only if for all non-decreasing functions u, {\rm E}[u(A)] \le {\rm E}[u(B)].
  2. If u is non-decreasing and A\preceq B then u(A) \preceq u(B)
  3. If u:\mathbb{R}^n\mapsto\mathbb{R} is an increasing function and A_i and B_i are independent sets of random variables with A_i \preceq B_i for each i, then u(A_1,\dots,A_n) \preceq u(B_1,\dots,B_n) and in particular \sum_{i=1}^n A_i \preceq \sum_{i=1}^n B_i Moreover, the ith order statistics satisfy A_{(i)} \preceq B_{(i)}.
  4. If two sequences of random variables A_i and B_i, with A_i \preceq B_i for all i each converge in distribution, then their limits satisfy A \preceq B.
  5. If A, B and C are random variables such that \sum_c\Pr(C=c)=1 and \Pr(A>u|C=c)\le \Pr(B>u|C=c) for all u and c such that \Pr(C=c)>0, then A\preceq B.

Other properties

If A\preceq B and {\rm E}[A]={\rm E}[B] then A=B in distribution.

Stochastic dominance

Stochastic dominance[1] is a stochastic ordering used in decision theory. Several "orders" of stochastic dominance are defined.

Multivariate stochastic order

Other stochastic orders

Hazard rate order

The hazard rate of a non-negative random variable X with absolutely continuous distribution function F and density function f is defined as

r(t) = \frac{d}{dt}(-\log(1-F(t))) = \frac{f(t)}{1-F(t)}.

Given two non-negative variables X and Y with absolutely continuous distribution F and G, and with hazard rate functions r and q, respectively, X is said to be smaller than Y in the hazard rate order (denoted as X \le_{hr}Y) if

r(t)\ge q(t) for all t\ge 0,

or equivalently if

\frac{1-F(t)}{1-G(t)} is decreasing in t.

Likelihood ratio order

Let X and Y two continuous (or discrete) random variables with densities (or discrete densities) f \left( t \right) and g \left( t \right), respectively, so that \frac{g \left( t \right)}{f \left( t \right)} increases in t over the union of the supports of X and Y; in this case, X is smaller than Y in the likelihood ratio order (X \le _{lr} Y).

Mean residual life order

Variability orders

If two variables have the same mean, they can still be compared by how "spread out" their distributions are. This is captured to a limited extent by the variance, but more fully by a range of stochastic orders.

Convex order

Convex order is a special kind of variability order. Under the convex ordering, A is less than B if and only if for all convex u, {\rm E}[u(A)] < {\rm E}[u(B)].

Laplace transform order

Laplace transform order is a special case of convex order where u is an exponential function: u(x) = \exp(-\alpha x). Clearly, two random variables that are convex ordered are also Laplace transform ordered. The converse is not true.

References

  1. M. Shaked and J. G. Shanthikumar, Stochastic Orders and their Applications, Associated Press, 1994.
  2. E. L. Lehmann. Ordered families of distributions. The Annals of Mathematical Statistics, 26:399–419, 1955.

See also