The steel square is a tool that carpenters use. They use many tools to lay out a "square" or right-angle, many of which are made of steel, but the title steel square refers to a specific long-armed square that has additional uses for measurement, especially of angles, as well as simple right-angles. Today the steel square is more commonly referred to as the framing square. It consists of a long arm and a shorter one, which meet at an angle of 90 degrees (a right angle). It can also be made of metals like aluminum, which is light and resistant to rust.
The wider arm, two inches wide, is called the blade; the narrower arm, one and a half inches wide, the tongue. The square has many uses, including laying out common rafters, hip rafters and stairs. It has a diagonal scale, board foot scale and an octagonal scale. On the newer framing squares there are degree conversions for different pitches and fractional equivalents.
Carpenter's squares are very much like steel squares.
Stairs usually consist of three components. They are the stringer, the tread and the riser. The stringer is the structural member that carries the load of the staircase, the tread is the horizontal part that is stepped on, and the riser board is the vertical part which runs the width of the structure. There are many types of stairs: open, closed, fully housed, winding, and so on, to mention a few of them.
Laying out a staircase requires rudimentary math. There are numerous building codes to which staircases must conform. In an open area the designer can incorporate a more desirable staircase. In a confined area this becomes more challenging. In most staircases there is one more rise than there are treads.
18" | 17" | 16" | 15" | 14" | 13" | 12" | 10" | 9" | 8" | |
---|---|---|---|---|---|---|---|---|---|---|
Common rafter length per foot run | 21.63" | 19.21" | 16.97" | 14.42" | ||||||
Hip or valley rafter length per foot run | 24.74" | 22.65" | 20.78" | 18.76" | ||||||
Difference in length of jacks 16 inch centers | 28.88" | 25.63" | 22.63" | 19.25" | ||||||
Difference in length of jacks 24 inch centers | 43.25" | 38.44" | 33.94" | 28.88" | ||||||
Side cut length of jack rafters | 6.69" | 7.5" | 8.5" | 10.00" | ||||||
Side cut of hip rafter or valley rafter | 8.25" | 9.0" | 9.81" | 10.88" | ||||||
This table shows five different types of rafter calculations and one table for marking an angle called the side cut or cheek cut. |
There is a table of numbers on the face side of the steel square; this is called the rafter table. The rafter table allows the carpenter to make quick calculations based on the Pythagorean theorem. The table is organized by columns that correspond to various slopes of the roof. Each column describes a different roof inclination (pitch) and contains the following information:
In addition to use the square tool, construction calculators are also used to verify and determine roofing calculations. Some are programmed to calculate all side cuts for hip, valley and jack regular rafters to be exactly 45° for all rafter pitches. The rafter table is expressed in inches, and the higher the numerical value of the pitch, the greater the difference between side cut angles within a given pitch. Only a level roof, or a 0 pitch will require a 45° angle side cut (cheek cut) for hip and jack rafters.
If a right triangle has two angles that equal 45° then the two sides are equidistant. The rafter is the hypotenuse and the legs or catheti of the triangle are the top wall plates of the structure. The side cut is located at the intersection of the given pitch column and the side cut of the hip/valley row. The regular hip/valley rafter runs at a 45° angle to the main roof and the unit of measurement is 16.97 inches of run. Regular hip/valley and jack rafters have different bevel angles within any given pitch and the angle decreases as the pitch increases.
|
||
c= hypotenuse | ||
P= pitch | ||
L= rafter length | ||
Z= difference in L of jack rafter 16" OC |
The side cut of the hip/valley rafter = (Tangent)(12) = side cut in inches. The side cuts in the rafter table are all in a base 12. The arc tan can be determined from any given pitch. Most power tools and angle measuring devises use 90° as 0° in construction. The complementary angles of the arc tan are used with tools like the speed square.
The side cut is located at the intersection of the side cut of jack rafters row and the pitch column on the Steel square. There is a row for the difference in length of jacks, 16 and 24 inch centers on the blade. The tangents are directly proportional for both centers.
The tangent is in a base 12. The tangent x 12 = side cut of jack rafters. This corresponds to the side cut on the Steel square. The complementary angles of the arc tan are used on most angle measuring devises in construction. The tangent of hip, valley, and jack rafters are less than 1.00 in all pitches above 0°. An eighteen pitch has a side cut angle of 29.07° and a two pitch has a side cut angle of 44.56° for jack rafters. This is a variation of 15.5° between pitches.
The plumb cut for jack and common rafters are the same angles. The level cut or seat cut is the complementary angle of the plumb cut. The notch formed at the intersection of the level and plumb cut Is commonly referred to as the bird’s mouth .
The plumb cut of the hip/valley rafter is expressed in the formula. The level cut is the complementary angle or 90° minus the arc tan.
Irregular hip valley rafters run at random angles to the ridge except 45°. The top plates can be 90° at the outside corners or various other angles. There are numerous irregular h/v roof plans. The Steel square's rafter table is applicable for regular hip/valley and jack rafters and not for irregular roofs.
In carpentry, a square or set square is a guide for establishing right angles (90° angles), usually made of metal and in the shape of a right triangle.