There are risks associated with never-before-done technologies like the construction and operation of a space elevator. A space elevator would present a navigational hazard, both to aircraft and spacecraft. Aircraft could be dealt with by means of simple air-traffic control restrictions. Impacts by space objects such as meteoroids and micrometeorites pose a more difficult problem for construction and operation of a space elevator.
Contents |
The Edwards space elevator design assumes a cable material with a tensile strength/density ratio of at least 130 GPa per 1300 kg/m^3 of density (1300 kg/m^3 is the density of carbon nanotubes). This equates to 0.1 GPa per kg/m^3 or 100,000,000 Newtons per kg/m of linear density. Before 1991, no such material was known.[1]
Progress is being made on tether materials. As the material technology will be new and pushed to its limits, the risks of unknown failure modes will be more present than otherwise. Thus, the risks of tether breakage will be a greater concern while time and construction experience and operational experience accrue.
If nothing were done, essentially all satellites with perigees below the top of the elevator would eventually collide with the elevator cable.[2] Twice per day, each orbital plane intersects the elevator, as the rotation of the Earth swings the cable around the equator. Usually the satellite and the cable will not line up. However, except for synchronized orbits, the elevator and satellite will eventually occupy the same place at the same time, almost certainly leading to structural failure of the space elevator and destruction of the satellite.
Most active satellites are capable of some degree of orbital manoeuvring and could avoid these predictable collisions, but inactive satellites and other orbiting debris would need to be either pre-emptively removed from orbit by "garbage collectors" or would need to be closely watched and nudged whenever their orbit approaches the elevator. The impulses required would be small, and need be applied only very infrequently; a laser broom system may be sufficient for this task. In addition, Brad Edward's design actually allows the elevator to move out of the way, because the fixing point is at sea and mobile. However, such movements would excite transverse oscillations of the cable. Edwards claims that these oscillations could be controlled so as to ensure that the cable avoids satellites on known paths.
Meteoroids present another problem, they would not be predictable and much less time would be available to detect and track them as they approach Earth. It is likely that a space elevator would still suffer impacts of some kind, no matter how carefully it is guarded. However, most space elevator designs call for the use of multiple parallel cables separated from each other by struts, with sufficient margin of safety that severing just one or two strands still allows the surviving strands to hold the elevator's entire weight while repairs are performed. If the strands are properly arranged, no single impact would be able to sever enough of them to overwhelm the surviving strands.
Micrometeorites are tiny high-speed particles found in high concentrations at certain altitudes. Avoiding micrometeorites is essentially impossible, and they will ensure that strands of the elevator are continuously being cut. Most methods designed to deal with this involve a design similar to a hoytether or to a network of strands in a cylindrical or planar arrangement with two or more helical strands. Constructing the cable as a mesh instead of a ribbon helps prevent collateral damage from each micrometeorite impact.
For stability, it is not enough that other fibers be able to take over the load of a failed strand — the system must also survive the immediate, dynamical effects of fiber failure, which generates projectiles aimed at the cable itself. For example, if the cable has a working stress of 50 GPa and a Young's modulus of 1000 GPa, its strain will be 0.05 and its stored elastic energy will be 1/2 × 0.05 × 50 GPa = 1.25×109 joules per cubic meter. Breaking a fiber will result in a pair of de-tensioning waves moving apart at the speed of sound in the fiber, with the fiber segments behind each wave moving at over 1,000 m/s (more than the muzzle velocity of a standard .223 caliber (5.56 mm) round fired from an M16 rifle). Unless these fast-moving projectiles can be stopped safely, they will break yet other fibers, initiating a failure cascade capable of severing the cable. The challenge of preventing fiber breakage from initiating a catastrophic failure cascade seems to be unaddressed in the current literature on terrestrial space elevators. Problems of this sort would be easier to solve in lower-tension applications (e.g., lunar elevators).
Corrosion is thought by some to be a risk to any thinly built tether (which most designs call for). In the upper atmosphere, atomic oxygen steadily eats away at most materials.[3] A tether will consequently need to either be made from a corrosion-resistant material or have a corrosion-resistant coating, adding to weight. Gold and platinum have been shown to be practically immune to atomic oxygen; several far more common materials such as aluminum are damaged very slowly and could be repaired as needed.
Other analyses show atomic oxygen to be a non-problem in practice.[4]
Another potential solution to the corrosion problem is a continuous renewal of the tether surface (which could be done from standard, though possibly slower elevators). This process would depend on the tether composition and it could be done on the nanoscale (by replacing individual fibers) or in segments.
The effectiveness of the magnetosphere to deflect radiation emanating from the sun decreases dramatically after rising several earth radii above the surface. This ionizing radiation may cause damage to materials within both the tether and climbers.
Any structure as large as a space elevator will have large numbers of tiny defects in the construction material. It has been suggested,[5][6] that, because large structures have more defects than small structures, that large structures are inherently weaker than small, giving an estimated carbon nanotube strength of only 24 GPa down to only 1.7 GPa in millimetre-scale samples, the latter equivalent to many high-strength steels, which would be vastly less than that needed to build a space elevator for a reasonable cost.
In the atmosphere, the risk factors of wind and lightning come into play. The basic mitigation is location. As long as the tether's anchor remains within two degrees of the equator, it will remain in the quiet zone between the Earth's Hadley cells, where there is relatively little violent weather. Remaining storms could be avoided by moving a floating anchor platform. The lightning risk can be minimized by using a nonconductive fiber with a water-resistant coating to help prevent a conductive buildup from forming. The wind risk can be minimized by use of a fiber with a small cross-sectional area that can rotate with the wind to reduce resistance. Ice forming on the cable also presents a potential problem. It could add significantly to the cable's weight and affect the passage of elevator cars. Also, ice falling from the cable could damage elevator cars or the cable itself. To get rid of ice, special elevator cars could scrape the ice off.
A final risk of structural failure comes from the possibility of vibrational harmonics within the cable. Like the shorter and more familiar strings of stringed musical instruments, the cable of a space elevator has a natural resonant frequency. If the cable is excited at this frequency, for example by the travel of elevators up and down it, the vibrational energy could build up to dangerous levels and exceed the cable's tensile strength. This can be avoided by the use of suitable damping systems within the cable, and by scheduling travel up and down the cable keeping its resonant frequency in mind. It may be possible to dampen the resonant frequency against the Earth's magnetosphere.
If despite all these precautions the elevator is severed anyway, the resulting scenario depends on where exactly the break occurred:
If the elevator is cut at its anchor point on Earth's surface, the outward force exerted by the counterweight would cause the entire elevator to rise upward into an unstable orbit.[7]
The ultimate altitude of the severed lower end of the cable would depend on the details of the elevator's mass distribution. In theory, the loose end might be secured and fastened down again. This would be an extremely tricky operation, however, requiring careful adjustment of the cable's center of gravity to bring the cable back down to the surface again at just the right location. It may prove to be easier to build a new system in such a situation.
If the break occurred at higher altitude, up to about 25,000 km, the lower portion of the elevator would descend to Earth and drape itself along the equator east of the anchor point, while the now unbalanced upper portion would rise to a higher orbit. Some authors (such as science fiction writers David Gerrold in Jumping off the Planet, Kim Stanley Robinson in Red Mars) have suggested that such a failure would be catastrophic, with the thousands of kilometers of falling cable creating a swath of meteoric destruction along the planet's surface; however, in most cable designs, the upper portion of any cable that fell to Earth would burn up in the atmosphere. Additionally, because proposed initial cables have very low mass (roughly 1 kg per kilometer) and are flat, the bottom portion would likely settle to Earth with less force than a sheet of paper due to air resistance on the way down.
If the break occurred at the counterweight side of the elevator, the lower portion, now including the "central station" of the elevator, would entirely fall down if not prevented by an early self-destruct of the cable shortly below it. Depending on the size, however, it would burn up on re-entry anyway. Simulations have shown that as the descending portion of the space elevator "wraps around" Earth, the stress on the remaining length of cable increases, resulting in its upper sections breaking off and being flung away. The details of how these pieces break and the trajectories they take are highly sensitive to initial conditions.[8]
It is almost inevitable that some objects — climbers, structural members, repair crews, etc. — will accidentally fall off the elevator at some point. Their subsequent fate would depend upon their initial altitude. Except at geostationary altitude, an object on a space elevator is not in a stable orbit and so its trajectory will not remain parallel to it. The object will instead enter an elliptical orbit, the characteristics of which depend on where the object was on the elevator when it was released.
If the initial height of the object falling off of the elevator is less than 23,000 km, its orbit will have an apogee at the altitude where it was released from the elevator and a perigee within Earth's atmosphere — it will intersect the atmosphere within a few hours, and not complete an entire orbit. Above this critical altitude, the perigee is above the atmosphere and the object will be able to complete a full orbit to return to the altitude it started from. By then the elevator would be somewhere else, but a spacecraft could be dispatched to retrieve the object or otherwise remove it. The lower the altitude at which the object falls off, the greater the eccentricity of its orbit.
If the object falls off at the geostationary altitude itself, it will remain nearly motionless relative to the elevator just as in conventional orbital flight. At higher altitudes the object would again be in an elliptical orbit, this time with a perigee at the altitude the object was released from and an apogee somewhere higher than that. The eccentricity of the orbit would increase with the altitude from which the object is released.
Above 47,000 km, however, an object that falls off of the elevator would have a velocity greater than the local escape velocity of Earth. The object would head out into interplanetary space, and if there were any people present on board it might prove impossible to rescue them.
The space elevator would run through the Van Allen belts. This is not a problem for most freight, but the amount of time a climber spends in this region would cause radiation poisoning to any unshielded human or other living things.[9][10] Some speculate that passengers would continue to travel by high-speed rocket, while space elevators haul bulk cargo. Research into lightweight shielding and techniques for clearing out the belts is underway.
More conventional and faster atmospheric reentry techniques such as aerobraking might be employed on the way down to minimize radiation exposure. De-orbit burns use relatively little fuel and are cheap.
An obvious option would be for the elevator to carry shielding to protect passengers, though this would reduce its overall capacity. The best radiation shielding is very mass-intensive for physical reasons. Alternatively, the shielding itself could in some cases consist of useful payload, for example food, water, fuel or construction/maintenance materials, and no additional shielding costs are incurred during ascent.
To shield passengers from the radiation in the Van Allen belt, perhaps counter-intuitively, material composed of light elements should be used, as opposed to lead shielding. In fact, high energy electrons in the Van Allen belts produce dangerous X-rays when they strike atoms of heavy elements. This is known as bremsstrahlung ("braking radiation"), and is the method used to create X-rays for medical use (such as in dentistry). Materials containing large amounts of hydrogen, such as water or (lightweight) plastics such as polyethylene, and lighter metals such as aluminium are better than heavier ones such as lead for preventing this secondary radiation. Such light-element shielding, if it were strong enough to protect against the Van Allen particle radiation, would also provide adequate protection against X-ray radiation coming from the sun during solar flares and coronal mass ejection events. Nevertheless the total mass required for radiation shielding is very high.
|