In combinatorial number theory, Singmaster's conjecture, named after David Singmaster, says there is a finite upper bound on the multiplicities of entries in Pascal's triangle (other than the number 1, which appears infinitely many times). It is clear that the only number that appears infinitely many times in Pascal's triangle is 1, because any other number x can appear only within the first x + 1 rows of the triangle. Paul Erdős said that Singmaster's conjecture is probably true but he suspected it would be very hard to prove.
Let N(a) be the number of times the number a > 1 appears in Pascal's triangle. In big O notation, the conjecture is:
Contents |
Singmaster (1971) showed that
Abbot, Erdős, and Hanson (see References) refined the estimate. The best currently known (unconditional) bound is
and is due to Kane (2007). Abbot, Erdős, and Hanson note that conditional on Cramér's conjecture on gaps between consecutive primes that
holds for any .
Singmaster (1975) showed that the Diophantine equation
has infinitely many solutions for the two variables n, k. It follows that there are infinitely many entries of multiplicity at least 6. The solutions are given by
where Fn is the nth Fibonacci number (indexed according to the convention that F1 = F2 = 1).
Computation tells us that
The next number in Singmaster's infinite family, and the next smallest number known to occur six or more times, is 61218182743304701891431482520.
It is not known whether any number appears more than eight times, nor whether any number besides 3003 appears that many times. The conjectured finite upper bound could be as small as 8, but Singmaster thought it might be 10 or 12.
It would appear from a related entry, (sequence A003015 in OEIS) in the Online Encyclopedia of Integer Sequences, that no one knows whether the equation N(a) = 5 can be solved for a. Nor is it known whether any number appears seven times.