SUPT4H1
Transcription elongation factor SPT4 is a protein that in humans is encoded by the SUPT4H1 gene.[1][2]
References
- ^ Chiang PW, Wang SQ, Smithivas P, Song WJ, Crombez E, Akhtar A, Im R, Greenfield J, Ramamoorthy S, Van Keuren M, Blackburn CC, Tsai CH, Kurnit DM (Sep 1996). "Isolation and characterization of the human and mouse homologues (SUPT4H and Supt4h) of the yeast SPT4 gene". Genomics 34 (3): 368–75. doi:10.1006/geno.1996.0299. PMID 8786137.
- ^ "Entrez Gene: SUPT4H1 suppressor of Ty 4 homolog 1 (S. cerevisiae)". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6827.
Further reading
- Hartzog GA, Basrai MA, Ricupero-Hovasse SL, et al. (1996). "Identification and analysis of a functional human homolog of the SPT4 gene of Saccharomyces cerevisiae". Mol. Cell. Biol. 16 (6): 2848–56. PMC 231277. PMID 8649394. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=231277.
- Wada T, Takagi T, Yamaguchi Y, et al. (1998). "DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs". Genes Dev. 12 (3): 343–56. doi:10.1101/gad.12.3.343. PMC 316480. PMID 9450929. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=316480.
- Wada T, Takagi T, Yamaguchi Y, et al. (1999). "Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro". EMBO J. 17 (24): 7395–403. doi:10.1093/emboj/17.24.7395. PMC 1171084. PMID 9857195. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1171084.
- Yamaguchi Y, Wada T, Watanabe D, et al. (1999). "Structure and function of the human transcription elongation factor DSIF". J. Biol. Chem. 274 (12): 8085–92. doi:10.1074/jbc.274.12.8085. PMID 10075709.
- Yamaguchi Y, Takagi T, Wada T, et al. (1999). "NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation". Cell 97 (1): 41–51. doi:10.1016/S0092-8674(00)80713-8. PMID 10199401.
- Kim JB, Yamaguchi Y, Wada T, et al. (1999). "Tat-SF1 Protein Associates with RAP30 and Human SPT5 Proteins". Mol. Cell. Biol. 19 (9): 5960–8. PMC 84462. PMID 10454543. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=84462.
- Ivanov D, Kwak YT, Guo J, Gaynor RB (2000). "Domains in the SPT5 Protein That Modulate Its Transcriptional Regulatory Properties". Mol. Cell. Biol. 20 (9): 2970–83. doi:10.1128/MCB.20.9.2970-2983.2000. PMC 85557. PMID 10757782. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=85557.
- Wada T, Orphanides G, Hasegawa J, et al. (2000). "FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH". Mol. Cell 5 (6): 1067–72. doi:10.1016/S1097-2765(00)80272-5. PMID 10912001.
- Ping YH, Rana TM (2001). "DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation". J. Biol. Chem. 276 (16): 12951–8. doi:10.1074/jbc.M006130200. PMID 11112772.
- Renner DB, Yamaguchi Y, Wada T, et al. (2001). "A highly purified RNA polymerase II elongation control system". J. Biol. Chem. 276 (45): 42601–9. doi:10.1074/jbc.M104967200. PMID 11553615.
- Mo X, Dynan WS (2002). "Subnuclear Localization of Ku Protein: Functional Association with RNA Polymerase II Elongation Sites". Mol. Cell. Biol. 22 (22): 8088–99. doi:10.1128/MCB.22.22.8088-8099.2002. PMC 134733. PMID 12391174. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=134733.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139241.
- Narita T, Yamaguchi Y, Yano K, et al. (2003). "Human Transcription Elongation Factor NELF: Identification of Novel Subunits and Reconstitution of the Functionally Active Complex". Mol. Cell. Biol. 23 (6): 1863–73. doi:10.1128/MCB.23.6.1863-1873.2003. PMC 149481. PMID 12612062. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=149481.
- Kim DK, Inukai N, Yamada T, et al. (2004). "Structure-function analysis of human Spt4: evidence that hSpt4 and hSpt5 exert their roles in transcriptional elongation as parts of the DSIF complex". Genes Cells 8 (4): 371–8. doi:10.1046/j.1365-2443.2003.00638.x. PMID 12653964.
- Kwak YT, Guo J, Prajapati S, et al. (2003). "Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties". Mol. Cell 11 (4): 1055–66. doi:10.1016/S1097-2765(03)00101-1. PMID 12718890.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Endoh M, Zhu W, Hasegawa J, et al. (2004). "Human Spt6 Stimulates Transcription Elongation by RNA Polymerase II In Vitro". Mol. Cell. Biol. 24 (8): 3324–36. doi:10.1128/MCB.24.8.3324-3336.2004. PMC 381665. PMID 15060154. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=381665.
- Mandal SS, Chu C, Wada T, et al. (2004). "Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II". Proc. Natl. Acad. Sci. U.S.A. 101 (20): 7572–7. doi:10.1073/pnas.0401493101. PMC 419647. PMID 15136722. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=419647.
- Jennings BH, Shah S, Yamaguchi Y, et al. (2005). "Locus-specific requirements for Spt5 in transcriptional activation and repression in Drosophila". Curr. Biol. 14 (18): 1680–4. doi:10.1016/j.cub.2004.08.066. PMID 15380072.