6-simplex |
Runcinated 6-simplex |
Biruncinated 6-simplex |
Runcitruncated 6-simplex |
Biruncitruncated 6-simplex |
Runcicantellated 6-simplex |
Runcicantitruncated 6-simplex |
Biruncicantitruncated 6-simplex |
Orthogonal projections in A6 Coxeter plane |
---|
In six-dimensional geometry, a runcinated 6-simplex is a convex uniform 6-polytope constructed as a runcination (3rd order truncations) of the regular 6-simplex.
There are 8 unique runcinations of the 6-simplex with permutations of truncations, and cantellations.
Contents |
Runcinated 6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | t0,3{3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
5-faces | 70 |
4-faces | 455 |
Cells | 1330 |
Faces | 1610 |
Edges | 840 |
Vertices | 140 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
The vertices of the runcinated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,1,1,2). This construction is based on facets of the runcinated 7-orthoplex.
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | |||
Dihedral symmetry | [4] | [3] |
biruncinated 6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | t1,4{3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
5-faces | 84 |
4-faces | 714 |
Cells | 2100 |
Faces | 2520 |
Edges | 1260 |
Vertices | 210 |
Vertex figure | |
Coxeter group | A6, [[35]], order 10080 |
Properties | convex |
The vertices of the biruncinted 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,1,2,2). This construction is based on facets of the biruncinated 7-orthoplex.
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | |||
Symmetry | [[7]](*)=[14] | [6] | [[5]](*)=[10] |
Ak Coxeter plane | A3 | A2 | |
Graph | |||
Symmetry | [4] | [[3]](*)=[6] |
Runcitruncated 6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | t0,1,3{3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
5-faces | 70 |
4-faces | 560 |
Cells | 1820 |
Faces | 2800 |
Edges | 1890 |
Vertices | 420 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
The vertices of the runcitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,1,2,3). This construction is based on facets of the runcitruncated 7-orthoplex.
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | |||
Dihedral symmetry | [4] | [3] |
biruncitruncated 6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | t1,2,4{3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
5-faces | 84 |
4-faces | 714 |
Cells | 2310 |
Faces | 3570 |
Edges | 2520 |
Vertices | 630 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
The vertices of the biruncitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,2,3,3). This construction is based on facets of the biruncitruncated 7-orthoplex.
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | |||
Dihedral symmetry | [4] | [3] |
Runcicantellated 6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | t0,2,3{3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
5-faces | 70 |
4-faces | 455 |
Cells | 1295 |
Faces | 1960 |
Edges | 1470 |
Vertices | 420 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
The vertices of the runcicantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,2,3). This construction is based on facets of the runcicantellated 7-orthoplex.
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | |||
Dihedral symmetry | [4] | [3] |
Runcicantitruncated 6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | t0,1,2,3{3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
5-faces | 70 |
4-faces | 560 |
Cells | 1820 |
Faces | 3010 |
Edges | 2520 |
Vertices | 840 |
Vertex figure | |
Coxeter group | A6, [35], order 5040 |
Properties | convex |
The vertices of the runcicantitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the runcicantitruncated 7-orthoplex.
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [7] | [6] | [5] |
Ak Coxeter plane | A3 | A2 | |
Graph | |||
Dihedral symmetry | [4] | [3] |
biruncicantitruncated 6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | t1,2,3,4{3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
5-faces | 84 |
4-faces | 714 |
Cells | 2520 |
Faces | 4410 |
Edges | 3780 |
Vertices | 1260 |
Vertex figure | |
Coxeter group | A6, [[35]], order 10080 |
Properties | convex |
The vertices of the biruncicantittruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,2,3,4,4). This construction is based on facets of the biruncicantitruncated 7-orthoplex.
Ak Coxeter plane | A6 | A5 | A4 |
---|---|---|---|
Graph | |||
Symmetry | [[7]](*)=[14] | [6] | [[5]](*)=[10] |
Ak Coxeter plane | A3 | A2 | |
Graph | |||
Symmetry | [4] | [[3]](*)=[6] |
The truncated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.