Runcinated 6-cube


6-cube

Runcinated 6-cube

Biruncinated 6-cube

Runcinated 6-orthoplex

6-orthoplex

Runcitruncated 6-cube

Biruncitruncated 6-cube

Runcicantellated 6-orthoplex

Runcicantellated 6-cube

Biruncitruncated 6-orthoplex

Runcitruncated 6-orthoplex

Runcicantitruncated 6-cube

Biruncicantitruncated 6-cube

Runcicantitruncated 6-orthoplex
Orthogonal projections in BC6 Coxeter plane

In six-dimensional geometry, a runcinated 6-cube is a convex uniform 6-polytope with 3rd order truncations (runcination) of the regular 6-cube.

There are 12 unique runcinations of the 6-cube with permutations of truncations, and cantellations. Half are expressed relative to the dual 6-orthoplex.

Contents

Runcinated 6-cube

Runcinated 6-cube
Type Uniform 6-polytope
Schläfli symbol t0,3{4,3,3,3,3}
Coxeter-Dynkin diagram
4-faces
Cells
Faces
Edges 7680
Vertices 1280
Vertex figure
Coxeter group BC6 [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Biruncinated 6-cube

Biruncinated 6-cube
Type Uniform 6-polytope
Schläfli symbol t1,4{4,3,3,3,3}
Coxeter-Dynkin diagram
4-faces
Cells
Faces
Edges 11520
Vertices 1920
Vertex figure
Coxeter group BC6 [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Runcitruncated 6-cube

Runcitruncated 6-cube
Type Uniform 6-polytope
Schläfli symbol t0,1,3{4,3,3,3,3}
Coxeter-Dynkin diagram
4-faces
Cells
Faces
Edges 17280
Vertices 3840
Vertex figure
Coxeter group BC6 [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Biruncitruncated 6-cube

Biruncitruncated 6-cube
Type Uniform 6-polytope
Schläfli symbol t1,2,4{4,3,3,3,3}
Coxeter-Dynkin diagram
4-faces
Cells
Faces
Edges 23040
Vertices 5760
Vertex figure
Coxeter group BC6 [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Runcicantellated 6-cube

Runcicantellated 6-cube
Type Uniform 6-polytope
Schläfli symbol t0,2,3{4,3,3,3,3}
Coxeter-Dynkin diagram
4-faces
Cells
Faces
Edges 13440
Vertices 3840
Vertex figure
Coxeter group BC6 [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Runcicantitruncated 6-cube

Runcicantitruncated 6-cube
Type Uniform 6-polytope
Schläfli symbol t0,1,2,3{4,3,3,3,3}
Coxeter-Dynkin diagram
4-faces
Cells
Faces
Edges 23040
Vertices 7680
Vertex figure
Coxeter group BC6 [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Biruncitruncated 6-cube

Biruncitruncated 6-cube
Type Uniform 6-polytope
Schläfli symbol t1,2,3,4{4,3,3,3,3}
Coxeter-Dynkin diagram
4-faces
Cells
Faces
Edges 23040
Vertices 5760
Vertex figure
Coxeter group BC6 [4,3,3,3,3]
Properties convex

Alternate names

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Related polytopes

These polytopes are from a set of 63 uniform polypeta generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.


β6

t1β6

t2β6

t2γ6

t1γ6

γ6

t0,1β6

t0,2β6

t1,2β6

t0,3β6

t1,3β6

t2,3γ6

t0,4β6

t1,4γ6

t1,3γ6

t1,2γ6

t0,5γ6

t0,4γ6

t0,3γ6

t0,2γ6

t0,1γ6

t0,1,2β6

t0,1,3β6

t0,2,3β6

t1,2,3β6

t0,1,4β6

t0,2,4β6

t1,2,4β6

t0,3,4β6

t1,2,4γ6

t1,2,3γ6

t0,1,5β6

t0,2,5β6

t0,3,4γ6

t0,2,5γ6

t0,2,4γ6

t0,2,3γ6

t0,1,5γ6

t0,1,4γ6

t0,1,3γ6

t0,1,2γ6

t0,1,2,3β6

t0,1,2,4β6

t0,1,3,4β6

t0,2,3,4β6

t1,2,3,4γ6

t0,1,2,5β6

t0,1,3,5β6

t0,2,3,5γ6

t0,2,3,4γ6

t0,1,4,5γ6

t0,1,3,5γ6

t0,1,3,4γ6

t0,1,2,5γ6

t0,1,2,4γ6

t0,1,2,3γ6

t0,1,2,3,4β6

t0,1,2,3,5β6

t0,1,2,4,5β6

t0,1,2,4,5γ6

t0,1,2,3,5γ6

t0,1,2,3,4γ6

t0,1,2,3,4,5γ6

Notes

  1. ^ Klitzing, (o3o3x3o3o4x - spox)
  2. ^ Klitzing, (o3x3o3o3x4o - sobpoxog)
  3. ^ Klitzing, (o3o3x3o3x4x - potax)
  4. ^ Klitzing, (o3x3o3x3x4o - boprag)
  5. ^ Klitzing, (o3o3x3x3o4x - prox)
  6. ^ Klitzing, (o3o3x3x3x4x - gippox)
  7. ^ Klitzing, (o3x3x3x3x4o - boprag)

References

External links