In complex analysis a branch of mathematics, the residue at infinity is a residue of a holomorphic function on an annulus having an infinite external radius. The infinity is a point added to the local space in order to render it compact (in this case it is a one-point compactification). This space noted is isomorphic to the Riemann sphere.[1] One can use the residue at infinity to calculate some integrals.
Given a holomorphic function f on an annulus (centered at 0, with inner radius and infinite outer radius), the residue at infinity of the function f can be defined in terms of the usual residue as follows:
Thus, one can transfer the study of at infinity to the study of at the origin.
Note that , we have